肿瘤突变负荷(TMB)及计算方法

本文介绍了肿瘤突变负荷(TMB)的概念,它代表蛋白编码区的非同义突变密度,与免疫治疗效果相关。TMB高意味着肿瘤细胞产生新抗原多,更易被免疫系统识别。文章讨论了TMB的解读、cut-off值、与dMMR和MSI的关系,以及计算方法,强调了TMB在指导临床治疗中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者,Evil Genius
有人问我干啥去了,是不是不做单细胞空间了,没办法啊,NGS也要干啊,以后指不定mNGS也要交给我了,头疼,30岁了一事无成还被人嫌弃,开个玩笑。
今天我们来分享一个NGS一个很关键的内容,TMB。
肿瘤突变负荷 tumor mutation burden, 简称TMB,代表蛋白编码区的非同义突变分布的密度,用蛋白编码区的非同义突变位点总数除以蛋白编码区的总长度, 单位为mutations/mb。
TMB是指肿瘤基因组中去除胚系突变后的体细胞突变数量。也就是去除天生的那些多样性的变异,只看肿瘤细胞的特有的变异的数量。
我们知道免疫细胞越是能识别出来肿瘤细胞,则免疫治疗的效果越好。而如果是TMB越是高,表明肿瘤产生的新抗原越多,肿瘤越是容易被免疫细胞识别出来。

微卫星高度不稳定(MSI-H)的情况下,肿瘤突变负荷通常也会比较高。
肿瘤的发生是体细胞突变引起的,体细胞在致癌因子的作用下发生基因突变,部分突变细胞经过DNA自我修饰恢复正常,一部分细胞死亡,还有部分突变细胞在其表面表达出新的抗原。正常情况下下,机体的免疫系统可以识别这些抗原,然后通过免疫应答反应来清楚这些突变的细胞,但是肿瘤细胞可以通过抗原的异常表达或者肿瘤微环境的调节,来实现免疫逃逸,继续分裂生长,形成肿瘤。 TMB的概念中只针对了蛋白编码区的非同义突变,因为只有这些突变才有可能使得肿瘤细胞产生新抗原。TMB越高,肿瘤细胞产生的新抗原的种类和数量越多,被免疫系统识别的概率越高, 免疫检查点抑制剂激活机体自身的抗肿瘤免疫应答反应后,杀伤这些肿瘤细胞的概率越大。
TMB结果如何解读?、
看cut-off值。

cut-off即临界值。在TMB结果解读中,称为最佳获益人群的临界阈值。

TMB的 cut-off值目前暂时没有一个统一的标准,业内公认的几个cut-off值为10,12,16。

高于这个值即为高TMB。

高TMB被认为可以从免疫治疗中获益,可尝试进行免疫疗法。

也有公司将TMB划分为以下3个层级
  • low TMB : 1-5 mutations/mb
  • intermediate TMB : 6-19 mutations/mb
  • high TMB : > 20 mutations/mb
比较公认的是肿瘤突变负荷超过20个突变/Mb(Mb代表每百万个碱基),就是高;低于10个突变/Mb,就是低。
具有较高TMB的肿瘤细胞更易被免疫系统识别,免疫疗法对该患者有效的概率也更高。计算肿瘤患者的TMB分值,能够更好的指导临床治疗。
TMB与dMMR和MSI间关系

TMB 数值可反映肿瘤内产生肿瘤新抗原的潜力,与 DNA 修复缺陷密切相关,一般dMMR和 MSI-H 患者具有较高的TMB。TMB 或 PD-L1可独立预测免疫检查点抑制剂疗效,且同时具有高TMB和高 PD-L1 表达的患者无进展生存期更长,说明TMB单独或联合检测均具有较好的疗效预测效能。

正常对照:大部分 TMB 检测需要正常对照,为检测提供胚系变异信息。全血标本:若用全血样本作为对照,以 2~5 mL EDTA 抗凝外周血,轻微颠倒混匀 8~10 次,建议用游离 DNA 专用采血管常温保存或运输。

病灶选取:肿瘤原发灶与远处转移灶组织均可用于 tTMB 评估。

TMB的计算方法

TMB计算的体细胞突变包括点突变和插入/缺失突变,去除驱动突变(与肿瘤治疗、诊断、预后密切相关的突变,包括热点突变、药物靶点突变、癌基因功能激活突变和抑癌基因功能失活突变)。由于TMB计算去除了可能影响免疫治疗效果的驱动突变,在极端情况下不排除出现 TMB=0 的可能。因而TMB = 0 仅表示检测样本在本产品的 TMB 分析方法的结果,并不等同于检测样本中没有突变。

需要在准备的几个文件(放在了文末)

Hotspot_mutations.txt 热点突变的文件
driver_gene.txt 驱动基因列表文件
tumor-suppressor 肿瘤抑制基因列表
clinvar谱系突变列表,千人计划的谱系突变位点。

其中组织样本:普通突变频率低于5%删除;热点突变为低于2%的删除;
血液样本:普通突变频率低于1%删除;热点突变为低于2%的删除;
当然,计算过程还涉及cosmic数据库等内容,比较复杂。每一步脚本要注明,完整的脚本如下:
import os
import re
 
 
def AAChange_refGene(aachange):
    # 从AAChange_refGene列得到基因、NM号、碱基变化和氨基酸变化,取NM号长度最短的
    array_t = re.sub('"','',aachange).split(',')
    arr = [int(n.split(':')[1][3:]) for n in array_t]
    info = ar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值