3D Gaussian Splatting(训练评估测试生成相应的效果图和指标值)

在这里插入图片描述

目前这个可视化viewer工具在Ubuntu下好像不能用,可以运行下面代码进行渲染图片的获取

训练加评估(./data/ROF/rabbit 是 经过colmap之后的数据集路径)

 python train.py -s  ./data/ROF/rabbit --eval

渲染,path to trained model=./output/f0e0c2fd-c

在这里插入图片描述

 python render.py -m  ./output/f0e0c2fd-c

在这里插入图片描述

计算渲染的指标

python metrics.py -m ./output/f0e0c2fd-c
在这里插入图片描述

3D Gaussian Splatting是一种用于生成高质量3D图像视频的技术。其流程图通常包括以下几个步骤: 1. **数据采集**:从多个视角拍摄或生成3D场景的图像数据。 2. **预处理**:对采集到的图像数据进行预处理,包括去噪、校准特征提取等。 3. **高斯点云生成**:将预处理后的数据转换为高斯点云,每个点代表一个高斯分布。 4. **优化**:通过优化算法调整高斯点云的位置、方向大小,以最小化重建误差。 5. **渲染**:使用优化后的高斯点云进行3D渲染,生成高质量的图像或视频。 6. **后处理**:对渲染结果进行后处理,如添加光照效果、纹理映射等。 以下是一个简化的流程图: ``` 数据采集 --> 预处理 --> 高斯点云生成 --> 优化 --> 渲染 --> 后处理 ``` 详细步骤如下: 1. **数据采集**: - 从不同角度拍摄场景的图像。 - 使用3D扫描仪或深度相机获取场景的深度信息。 2. **预处理**: - 对图像进行去噪处理。 - 校准相机参数。 - 提取图像中的特征点。 3. **高斯点云生成**: - 将特征点转换为高斯分布。 - 初始化高斯点云的位置方向。 4. **优化**: - 使用优化算法(如梯度下降)调整高斯点云。 - 最小化重建误差,使渲染结果更接近真实场景。 5. **渲染**: - 使用优化后的高斯点云进行3D渲染。 - 生成高质量的图像或视频。 6. **后处理**: - 添加光照效果。 - 进行纹理映射。 - 其他视觉效果处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值