数据处理
在处理具体的深度学习问题时,要从数据处理开始,在python常用的数据分析中,常常使用pandas软件包,pandas可以与张量兼容
本节将使用pandas软件包,来预处理原始数据,并将原始数据转换成张量格式的步骤。
1.读取数据集
创建一个人工数据集,并存储在CSV文件中,路径为: …/data/house_tiny.csv
import os
import pandas as pd
# 1.创建文件夹
os.makedirs(os.path.join('..','data','house_tiny.csv'),exist_ok=True)
# 2.记录文件的存储路径
datafile = os.path.join('..','data','')
# 3.写入文件
with open(datafile,'w') as f:
f.write('NumRooms,Alley,Price\n') # 排名
f.write('NA,Pave,127500\n') # 每行表示一个数据样本
f.write('2,NA,106000\n')
f.write('4,NA,178100\n')
f.write('NA,NA,140000\n')
# 4.调用pandas中的read_csv函数,从创建的CSV文件中加载原始数据集
data = pd.read_csv(datafile)
print(data)
2.处理缺失值
NaN代表缺失值,可以利用插值法和删除法处理缺失数据,插值法:
inputs,outputs = data.iloc[:, 0:2], data.iloc[:, 2] # iloc表示位置索引
inputs = inputs.fillna(inputs.mean()) # data.fillna()用于填充缺失值的函数
print(inputs)
# Alley有两种类别:Alley_Pave Alley_NaN
inputs = pd.get_dummies(inputs, dummy_na=True) # get_dummies表示将分类变量转换成哑变量 dummy_na=True表示为缺失值创建哑变量列
print(inputs)
3.转换成张量格式
# 需要导入torch
import torch
# 此时的inputs,outputs为数值类型,需要转换成张量格式
x = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))
print(x,y)
遇到的小问题:
column=
作为参数传入的为一个类似列表的数据结构,因此要加上[]
,否则会出现TypeError: Input must be a list-like for parameter columns
这个报错!
Traceback (most recent call last):
File "E:\WorkSpace\Deep_Learning\data_operation\数据处理练习.py", line 30, in <module>
inputs = pd.get_dummies(inputs,columns='爱好类型', dummy_na=True)
File "C:\Users\Cindy\AppData\Roaming\Python\Python39\site-packages\pandas\core\reshape\reshape.py", line 845, in get_dummies
raise TypeError("Input must be a list-like for parameter `columns`")
TypeError: Input must be a list-like for parameter `columns`