YOLOv5/v7训练结果results.csv绘制loss/mAP等曲线对比图

本文介绍了如何使用Python读取并处理YOLOv5训练结果CSV文件,通过清理列名后,绘制不同模型增强策略(如CA、C3CA等)下mAP@0.5的比较曲线,以展示模型性能变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1.实现代码

        可根据代码注释和自己的需求修改代码,实现自己的需求。

        python,复制粘贴改路径就能用。

import os.path

import pandas as pd
import matplotlib.pyplot as plt


# Function to clean column names
def clean_column_names(df):
    df.columns = df.columns.str.strip()
    df.columns = df.columns.str.replace('\s+', '_', regex=True)


# nonoresult.csv表示原始的结果图,csv文件在runs/train/exp中
s_results = pd.read_csv(r"D:\python\projects\yolov5-7.0\runs\train-seg\exp28_5s\results.csv")
C3CA_results = pd.read_csv(r"D:\python\projects\yolov5-7.0\runs\train-seg\exp-C3CA\results.csv")
C3CBAM_results = pd.read_csv(r"D:\python\projects\yolov5-7.0\runs\train-seg\exp-C3CBAM\results.csv")
C3ECA_results = pd.read_csv(r"D:\python\projects\yolov5-7.0\runs\train-seg\exp-C3ECA\results.csv")
CA_results = pd.read_csv(r"D:\python\projects\yolov5-7.0\runs\train-seg\exp-CA\results.csv")
CBAM_results = pd.read_csv(r"D:\python\projects\yolov5-7.0\runs\train-seg\exp-CBAM\results.csv")
ECA_results = pd.read_csv(r"D:\python\projects\yolov5-7.0\runs\train-seg\exp-ECA\results.csv")

# Clean column names
clean_column_names(s_results)
clean_column_names(C3CA_results)
clean_column_names(C3CBAM_results)
clean_column_names(C3ECA_results)
clean_column_names(CA_results)
clean_column_names(CBAM_results)
clean_column_names(ECA_results)

# Plot mAP@0.5 curves
plt.figure()
#中括号是results.csv表格中的列名称
# lable属性为曲线名称,自己可以定义
plt.plot(CA_results['metrics/mAP_0.5(B)'], label="YOLOv5s-seg")    
plt.plot(s_results['metrics/mAP_0.5(B)'], label="YOLOv5s-seg+CA")    
plt.plot(C3CA_results['metrics/mAP_0.5(B)'], label="YOLOv5s-seg+C3CA")
plt.plot(C3CBAM_results['metrics/mAP_0.5(B)'], label="YOLOv5s-seg+C3CBAM")
plt.plot(C3ECA_results['metrics/mAP_0.5(B)'], label="YOLOv5s-seg+C3ECA")
plt.plot(CBAM_results['metrics/mAP_0.5(B)'], label="YOLOv5s-seg+CBAM")
plt.plot(ECA_results['metrics/mAP_0.5(B)'], label="YOLOv5s-seg+ECA")

#横坐标表示为
plt.xlabel("Epoch")
#纵坐标表示为
plt.ylabel("mAP@0.5")
plt.legend()
#表格标题
plt.title("mAP@0.5 Comparison")
#保存路径
plt.savefig(os.path.join(r'D:\python\projects\yolov5-7.0\runs\train-seg\1',
                         "mAP_0.5_comparison.png"))

2.实现效果

### 不同版本YOLO模型的主要特性 #### YOLOv8 特性 YOLOv8引入了一系列改进,旨在提高速度和准确性的同时保持简单易用的特点。为了验证YOLOv8模型的效果,可以采用验证模式来评估模型的表现并识别需要改进的地方[^3]。 #### YOLOv7 特性 YOLOv7专注于提供更快的速度以及更高的精度,在资源受限设备上也能高效运行。该版本强调了无需额外训练数据即可超越许多现有模型的能力,并且特别优化了对于移动平台的支持。 #### YOLOv6 特性 YOLOv6继续沿用了前几代的设计理念——快速而精确的目标检测算法;同时针对实际应用场景做了进一步调整,比如更好的支持多尺度预测等功能,使得模型更加灵活适用不同类型的片尺寸。 #### YOLOv5 特性 作为较早的一个版本,YOLOv5已经具备相当成熟的技术框架,实现了端到端的一次性推理过程,能够处理多种复杂环境下的目标定位任务;此外还增加了对自定义配置文件的支持以便于用户根据具体需求定制化修改网络结构参数等设置. ```python import torch from ultralytics import YOLO model_v5 = YOLO('yolov5s.pt') model_v6 = YOLO('yolov6s.pt') model_v7 = YOLO('yolov7s.pt') model_v8 = YOLO('yolov8s.pt') results_v5 = model_v5(imgsz=640) results_v6 = model_v6(imgsz=640) results_v7 = model_v7(imgsz=640) results_v8 = model_v8(imgsz=640) print(f'YOLOv5 Results: {results_v5}') print(f'YOLOv6 Results: {results_v6}') print(f'YOLOv7 Results: {results_v7}') print(f'YOLOv8 Results: {results_v8}') ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值