从0开始手撕线性回归

线性回归

在我们开始考虑如何用模型拟合(fit)数据之前,我们需要确定一个拟合程度的度量。 损失函数(loss function)能够量化目标的实际值与预测值之间的差距。

解析解:能用公式表达出来的解(对问题的限制很严格)

即使在我们无法得到解析解的情况下,我们仍然可以有效地训练模型。 在许多任务上,那些难以优化的模型效果要更好。 因此,弄清楚如何训练这些难以优化的模型是非常重要的。

梯度下降

线性回归优化方法:梯度下降

小批量随机梯度下降:

b是batch size

随机采样b个样本

最简单的用法是计算损失函数关于模型参数的导数

但实际中的执行可能会非常慢:因为在每一次更新参数之前,我们必须遍历整个数据集。 因此,我们通常会在每次需要计算更新的时候随机抽取一小批样本, 这种变体叫做小批量随机梯度下降

总结:

  • 梯度下降是不断沿着反梯度方向更新参数求解
  • 小批量随机梯度下降是深度学习的默认解法
  • 重要超参:batch size和lr

代码实现

从0开始手撕:

import torch
import random
# make a dataset with noises
# w = [2,-3.4] b = 4.2 (已知 w,b)
def synthetic_data(w, b, num_examples):
    x = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(x, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return x, y.reshape((-1, 1))

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

# data_iter 接受batch_size, features, labels为输入,生成大小为batch_size的小批量
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 随机读取小批量
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(indices[i:min(i+batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]
        
batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    break

# 初始化模型参数
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
# requires_grad需要计算梯度

# 定义模型
def linreg(X, w, b):
    """线性回归模型"""
    return torch.matmul(X, w) + b

# 定义loss function
def squared_loss(y_har, y):
    """均方损失"""
    return (y_har - y.reshape(y_har.shape))**2 / 2

# 定义优化算法
def sgd(params, lr, batch_size):
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_() # 手动把梯度设为0,下一次计算和上一次不相关
            
lr = 0.03
num_epochs = 3 # 整个数据迭代三遍
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y) # l是有关小批量X和y的损失
        # 因为l的形状是(batch_size, 1),而不是一个标量。l.sum()将l的所有元素求和得到一个标量
        # 再调用backward()自动求['w','b']的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size) # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch+1}, loss {float(train_l.mean()):f}')

用pytorch简化写法:

# 调用现有API实现线性回归框架
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000) # synthetic_data内置函数

def load_array(data_arrays, batch_size, is_train=True):
    """构造一个PyTorch数据迭代器"""
    dataset = data.TensorDataset(*data_arrays) #
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size)

next(iter(data_iter))

# 使用框架的预定义好的层
# nn是神经网络的缩写
from torch import nn

net = nn.Sequential(nn.Linear(2, 1)) # 按顺序放在一起

# 初始化模型参数
net[0].weight.data.normal_(0, 0.01) # 用正态分布替换data的值
net[0].bias.data.fill_(0) # bias是偏差,设置为0

loss = nn.MSELoss() # 均方损失

# net.parameters包括w和b
trainer = torch.optim.SGD(net.parameters(), lr=0.03) # 优化器

num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X), y)
        trainer.zero_grad()
        # trainer.是优化器,zero_grad()是梯度清零
        l.backward()
        # pytorch已经做了sum了,不需要求sum了
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值