【论文精读】Color-wise Attention Network for Low-light Image Enhancement

摘要

在捕获图像时缺少附近的光源会降低捕获图像的可见度和质量,使计算机视觉任务变得困难。提出了一种基于卷积神经网络的颜色注意网络(CWAN)用于微光图像增强。CWAN在观看暗图像时受到人类视觉系统的激励,在微光图像和增强图像之间学习端到端映射,同时在微光图像中搜索任何有用的颜色线索,以帮助颜色增强过程。一旦识别出这些区域,CWAN的注意力将主要集中在合成这些局部区域以及全局图像上。在具有挑战性的数据集上进行的定量和定性实验表明,与最先进的方法相比,我们的方法具有优势。

贡献

1、提出了一种新的基于颜色的LLIE注意网络(CWAN)。CWAN与增强颜色分量分开地增强图像的亮度。通过这样做,我们简化了LLIE问题并达到了最先进的水平。
2、提出了一种利用颜色频率图训练 C W A N A B CWAN_{AB} CWANAB的有监督注意机制。根据图像中的颜色频率,选择暗图像中希望连续增强的关键局部颜色点。从本质上讲,学习这些选定的颜色是引起网络关注的一个很好的起点。

提出的方法

在这里插入图片描述

基于颜色的注意力模型通过LAB颜色空间将低光RGB图像分解为亮度和颜色分量。其动机是简化具有挑战性的LLIE过程,并允许颜色信息驱动 C W A N A B CWAN_{AB} CWANAB的注意力,而 C W A N L CWAN_L CWANL专注于同时增强图像亮度和去噪。亮度和颜色分量可以分别增强,它们的融合产生最终的增强图像。从概念上讲,分别增强这两个组件比同时执行两个任务更容易。
在这里插入图片描述

问题表述

给定一幅微光图像,其亮度图像 X L ∈ R H × W X_L\in R^{H\times W} XLRH×W被传入 CWAN L \textrm{CWAN}_L CWANL,颜色分量被传入 CWAN A B \textrm{CWAN}_{AB} CWANAB。分别输出增强的亮度图像 X ^ L \hat X_L X^L X ^ A B \hat X_{AB} X^AB,以及两个中间输出颜色注意图 M ^ \hat M M^和稀疏注意图 P ^ \hat P P^。我们的目标是训练 CWAN L \textrm{CWAN}_{L} CWANL,表示为 F L ( X L ; θ L ) \mathscr{F}_{L}(\textrm{X}_{L};\theta_{L}) FL(XL;θL),从低亮度图像到增强亮度图像的映射。同样训练 CWAN A B \textrm{CWAN}_{AB} CWANAB,表示为 F A B ( X A B ; θ A B ) \mathscr{F}_{AB}(\textrm{X}_{AB};\theta_{AB}) FAB(XAB;θAB)。因此,将LLIE问题表示为:
θ L ∗ = a r g m i n θ L E X L , Y L , D L [ L L ( F L ) , Y L ] (1) \theta_L^*=\underset{\theta_L}{argmin}E_{X_L,Y_L,\mathscr{D}_L}[\mathscr{L}_L(\mathscr{F}_L),Y_L]\tag{1} θL=θLargminEXL,YL,DL[LL(FL),YL](1)
θ A B ∗ = a r g m i n θ A B E X A B , Y A B , P , D A B [ L A B ( F A B ) , Y A B , P ] (2) \theta_{AB}^*=\underset{\theta_{AB}}{argmin}E_{X_{AB},Y_{AB},P,\mathscr{D}_{AB}}[\mathscr{L}_{AB}(\mathscr{F}_{AB}),Y_{AB},P]\tag{2} θAB=θABargminEXAB,YAB,P,DAB[LAB(FAB),YAB,P](2)
其中 D \mathscr{D} D表示训练数据集, L \mathscr{L} L表示损失函数, Y L Y_L YL Y A B Y_{AB} YAB表示真实亮度和颜色分量, P P P是用于指导 CWAN A B \textrm{CWAN}_{AB} CWANAB的真实图像关注点的稀疏集合。如上图所示, CWAN A B \textrm{CWAN}_{AB} CWANAB首先使用注意图生成器 F M \mathscr{F}_M FM估计注意图 M ^ \hat M M^,从而帮助学习 P ^ \hat P P^,然后对方程进行优化。在公式(2)之前,需要对 F M \mathscr{F}_M FM进行预训练生成 M ^ \hat M M^,其公式如下:
θ M ∗ = a r g m i n θ M E X A B , M , D A B [ L M ( F M ) , M ] (3) \theta_M^*=\underset{\theta_M}{argmin}E_{X_{AB},M,\mathscr{D}_{AB}}[\mathscr{L}_M(\mathscr{F}_M),M]\tag{3} θM=θMargminEXAB,M,DAB[LM(FM),M](3)
其中 M M M是真实注意图。注意图和关注点服务于不同目的,前者帮助识别与前景颜色相关联的局部区域,而后者指定局部区域内的稀疏点。

网络架构

WAN利用两个完全卷积网络(FCN),使得两个FCN都由特征提取卷积层( f e x t f_{ext} fext)、中间的几个卷积块和最终特征重构卷积层( f r e c f_{rec} frec)组成。为了减轻训练难度,我们使用全局跳跃连接而不是直接映射来学习残差。所有块都具有相同数量的卷积层和ReLU层。这里,我们定义了两种类型的块,CWAN L _L L中使用的存储块和CWAN A B _{AB} AB中使用的前向块,如下所述。

CWAN L _L L结构

CWAN L _L L由一系列存储块组成。这些块取自[31]中的图像恢复工作,并成功地用于图像去噪、超分辨率和JPEG去块。我们建议读者参考[31],以获得关于内存块的更详细的解释。通常,如图所示,存储器块利用块内的本地短跳过连接来表示短期存储器,以及从先前块发起的长跳过连接来表示长期存储器。短期和长期存储器帮助CWAN L _L L实现存储器块内和存储器块之间的小的和大的亮度增强。

CWAN A B _{AB} AB结构

在CWAN L _L L中,所有的转换层都有相同数量和大小的滤光片,使长和短跳跃连接成为可能。相比之下,CWAN A B _{AB} AB不使用短跳过连接和长跳过连接。相反,在每个块中,中间卷积层是具有1×1滤波器的非线性激活。这项技术已成功地应用于超分辨率。
该网络由两部分组成,第一部分 F M \mathscr{F}_M FM X A B X_{AB} XAB作为输入以生成注意图 M ^ \hat M M^;第二部分将 X A B X_{AB} XAB M ^ \hat M M^一起构成的四通道输入以增强颜色。第一部分的目标是在内部估计,在图像的兴趣点中具有高活跃度的 M ^ \hat M M^,以便在第二部分的增强过程中引导局部区域。由于 X A B X_{AB} XAB具有两个颜色通道,因此估计 M ^ \hat M M^也是双通道注意图,并且注意力针对每个空间坐标上的每个通道。为了监督 F M \mathscr{F}_M FM学习,建议使用彩色频率图像来生成真实注意图 M M M,如公式(3)中描述的那样。在CWAN A B _{AB} AB的第二部分学习了从堆叠的 X A B X_{AB} XAB M ^ \hat M M^到增强型 X ^ A B \hat X_{AB} X^AB以及稀疏关注颜色的 P ^ \hat P P^映射。真实关注点 P P P是通过从 M M M中选择一组非零的前景色点来生成的, M M M P P P在颜色方面的注意力机制中扮演了重要的角色。

注意力图和关注点

在这里插入图片描述
上图中,(a)表示输入图像,(b)表示颜色频率图像 F F F,© 表示注意力图 M M M,(d)表示注意力点 P P P.
频率图像表征与频率信息一起的空间分布。给定一个图像X,我们可以计算它的色频图像F,其中F等于图像X中RGB色X(x,y)出现的次数。
获取彩色频率图操作如下。首先,我们对F应用阈值 τ \tau τ以消除特定的不需要的频率。例如,上图顶部图像中的白色背景在F中具有非常高的频率,而X的一些部分在F中具有非常低的频率,例如,噪声像素或玩具的眼睛。通过 τ l \tau _l τl<F< τ u \tau _u τu分割F,我们强调了对前景颜色的关注,并消除了主色频率和次要噪声区域。这将产生所需颜色频率的二进制掩码,由 F ‾ \overline{F} F
F ‾ ( x , y ) = { 1 , if  τ l < F ( x , y ) < τ u 0 , otherwise (4) \overline{F}(x,y)=\begin{cases}1,\text{if }\tau_l<F(x,y)<\tau_u\\0,\text{otherwise}\end{cases}\tag{4} F(x,y)={1,if τl<F(x,y)<τu0,otherwise(4)
在计算 F ‾ \overline F F之后,生成的真实颜色注意图 M ( : , : , i ) = X A B ( : , : , i ) ⊙ F ‾ M(:,:,i)=X_{AB}(:,:,i)\odot\overline{F} M(:,:,i)=XAB(:,:,i)F其中 ⊙ \odot 是Hadamard乘积。我们对M进行线性归一化,使其在[0,1]范围内,通常M包含前景色。
在我们的注意机制中, M M M监督 M ^ \hat M M^的学习,该学习输入到后续的网络中,并引导CWAN A B _{AB} AB专注于增强粗略局部区域的前景颜色。另一方面,P指导像素级别的颜色增强,识别关键的前景颜色。由于M具有比P多得多的重复前景颜色,因此由P监督可以覆盖大多数颜色,但使用最少的、不重复的约束。

目标函数

为了训练CWAN L _L L,我们使用L1Loss函数来处理合成增强型亮度 X ^ L \hat X_L X^L的回归问题。另一方面,训练CWAN A B _{AB} AB分两个阶段进行。第一阶段训练颜色方向注意图生成器仅通过L1Loss预测 M ^ \hat M M^
L M ( F M ( X A B ; θ M ) , M ) = ∣ ∣ M ^ − M ∣ ∣ 1 (5) \mathscr{L}_M(\mathscr{F}_M(X_{AB};\theta_M),M)=||\hat M-M||_1\tag{5} LM(FM(XAB;θM),M)=M^M1(5)
二阶段端到端学习CWAN A B _{AB} AB,包括微调预先训练的注意图生成器。建议使用以下损失函数:
L A B ( F A B ( X A B ; θ A B ) , Y A B ) = L H + α L M S E (6) \mathscr{L}_{AB}(\mathscr{F}_{AB}(X_{AB};\theta _{AB}),Y_{AB})=\mathscr{L}_{\mathscr{H}}+\alpha\mathscr{L}_{MSE}\tag{6} LAB(FAB(XAB;θAB),YAB)=LH+αLMSE(6)
这里 α \alpha α是重量, L H \mathscr{L_H} LH是应用于 X ^ A B \hat X_{AB} X^AB的Huber损失。由于相对较高的色彩饱和度效应,Huber损耗在图像彩色化领域取得了巨大的成功,这使得它适合于增强微光图像。此外,我们选择Huber损失也是因为它是一个稳健的估计器,可以帮助避免平均问题。LMSE是应用于估计的关注点 P ^ \hat P P^的均方误差损失,如下所示:
L H = { 1 2 ( X ^ A B − Y A B ) 2 , if  ∣ X ^ A B − Y A B ∣ ≤ δ δ ∣ X ^ A B − Y A B ∣ − 1 2 δ 2 , otherwise (7) \mathscr{L_H}=\begin{cases}\frac{1}{2}(\hat X_{AB}-Y_{AB})^2,\text{if }|\hat X_{AB}-Y_{AB}|\leq \delta\\\delta|\hat X_{AB}-Y_{AB}|-\frac{1}{2}\delta^2,\text{otherwise}\end{cases}\tag{7} LH={21(X^ABYAB)2,if X^ABYABδδX^ABYAB21δ2,otherwise(7)
L M S E = 1 β ∣ ∣ ( P ^ − P ) ⊙ B P ∣ ∣ 2 2 (8) \mathscr{L}_{MSE}=\frac{1}{\beta}||(\hat P-P)\odot B_P||_2^2\tag{8} LMSE=β1(P^P)BP22(8)
其中 β \beta β是胡伯损耗的参数,当CWAN A B _{AB} AB输出 P ^ \hat P P^中所有位置的颜色时, L M S E \mathscr{L}_{MSE} LMSE损失仅采用 B P B_P BP中随机采样颜色位置的重建颜色来计算。

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值