清单
● 1143. 最长公共子序列
● 1035. 不相交的线
● 53. 最大子序和 动态规划
LeetCode #1143 最长公共子序列
1. 题目
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。如果不存在公共子序列,返回 0。
一个字符串的子序列是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。
两个字符串的公共子序列是这两个字符串所共同拥有的子序列
2. 思路
对比两个字符串,采用二维数组完成解题
- dp数组含义: 数组的公共子序列长度为dp[i][j]
- 递推公式: 当 text1[i-1] == text2[j-1] 时: dp[i][j] = dp[i-1][j-1] + 1,否则 dp[i][j] = max(dp[i-1][j], dp[i][j-1])
- 初始化: dp[0][0] = 0
- 遍历顺序: 正序遍历
3. 代码实现
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
#Initial dp
dp = [[0] * (len(text2) + 1) for _ in range(len(text1)+1)]
for i in range(1, len(text1)+1):
for j in range(1, len(text2)+1):
if text1[i-1] == text2[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
return dp[len(text1)][len(text2)]
LeetCode #1035 不相交的线
1. 题目
在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。
现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足满足:
nums1[i] == nums2[j]
且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。
以这种方法绘制线条,并返回可以绘制的最大连线数。
2. 思路
类似于上一题思路
- dp数组含义: 能绘制的最大连线数
- 递推公式: 当 text1[i-1] == text2[j-1] 时: dp[i][j] = dp[i-1][j-1] + 1,否则 dp[i][j] = max(dp[i-1][j], dp[i][j-1])
- 初始化: dp[0][0] = 0
- 遍历顺序: 正序遍历
3. 代码实现
class Solution:
def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
#Initial dp
dp = [[0] * (len(nums2)+1) for _ in range(len(nums1)+1)]
for i in range(1,len(nums1)+1):
for j in range(1, len(nums2)+1):
if nums1[i-1] == nums2[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
return dp[len(nums1)][len(nums2)]
LeetCode #53 最大子序和
1. 题目
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
2. 思路
- dp数组含义: dp[i]为最大和
- 递推公式: dp[i] = max(dp[i-1] + nums[i], nums[i])
- 初始化: dp[0] = nums[0]
- 遍历顺序: 正向遍历
3. 代码实现
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
if len(nums)<=1:
return sum(nums)
#Initial dp
dp = [0] * (len(nums)+1)
dp[0] = nums[0]
result = nums[0]
for i in range(1, len(nums)):
dp[i] = max(dp[i-1] + nums[i], nums[i])
result = max(dp[i], result)
return result