Stable Diffusion实现AI绘画,尝试向实际业务迈进...

前置:

        由于处于学习初期,懂得较少以及可能会出现理解错误等情况,故而文章仅供参考学习使用,旨在分享知识,共同学习,不能作为依据,如有错误,感谢指出,文章主题分为两部分,学习部分也就理论知识,实践部分主要包括问题及解决方案。

一、Stable Diffusion:

文生图:

1.提示词分类以及书写:

Tips:

①ai对于提示词的认知是词组>句子,完整的语法结构反而更难理解

1.1内容型提示词:

人物及主体特征:

服饰穿搭 white dress

发型发色 red hair,long hair

五官特点 small eyes,big mouth

面部表情 smilling

肢体动作 stretching arms

场景特征:

室内室外 indoor/outdoor

大场景 forest,city,street

小细节 tree,bush,white flower

环境光照

白天黑夜 day/night

特定时段 morning,sunset

光环境 sunlight,bright,dark

天空 blue sky,starry sky

画幅视角

距离 close-up,distant

人物比例 full body,upper body

观察视角 from above,view of back

镜头类型 wide angle,Sony A7 IIII

1.2标准化提示词:

画质提示词:

通用高画质 best quality,ultra-detailed, masterpiece, hires, 8k 特定高分辨率类型 extremely detailed CG unity 8k wallpaper (超精细的8KUnity游戏CG),unreal engine rendered(虚幻引警渲染)

画风提示词 插画风 illustration, painting, paintbrush 二次元 anime, comic, game CG 写实系 photorealistic, realistic, photograph

2.权重与负面提示词:

①套括号() (white flower) = *1.1权重

②(white flower:1.5) 在括号内直接加:和需要的权重

③(((white flower))) 每多套一层权重就是原来的1.1倍,这里是1.331倍

④多括号{ { {white flower}}} 每套一层额外*1.05倍

⑤方括号[[[white flower]]] 每套一层,额外*0.9倍

3.反向提示词:

顾名思义,反向提示词就是不需要出现在画面中的内容

4.出图参数详解:

4.1采样方法

AI进行图像生成的时候使用的某种特定算法

Euler (a)

适合插画风格

DPM 2M 和2M Karras

速度快

SDE Karras

细节更为丰富

Tips:

带++一般是改进过的算法

4.2面部修复

采用对抗算法识别人物面部并进行修复,类似美图app的智能p脸

4.3平铺/分块

用于生成可以无缝贴满整个屏幕的纹理性图片的,勾选容易出错

4.4提示词相关性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值