前置:
由于处于学习初期,懂得较少以及可能会出现理解错误等情况,故而文章仅供参考学习使用,旨在分享知识,共同学习,不能作为依据,如有错误,感谢指出,文章主题分为两部分,学习部分也就理论知识,实践部分主要包括问题及解决方案。
一、Stable Diffusion:
文生图:
1.提示词分类以及书写:
Tips:
①ai对于提示词的认知是词组>句子,完整的语法结构反而更难理解
1.1内容型提示词:
人物及主体特征:
服饰穿搭 white dress
发型发色 red hair,long hair
五官特点 small eyes,big mouth
面部表情 smilling
肢体动作 stretching arms
场景特征:
室内室外 indoor/outdoor
大场景 forest,city,street
小细节 tree,bush,white flower
环境光照
白天黑夜 day/night
特定时段 morning,sunset
光环境 sunlight,bright,dark
天空 blue sky,starry sky
画幅视角
距离 close-up,distant
人物比例 full body,upper body
观察视角 from above,view of back
镜头类型 wide angle,Sony A7 IIII
1.2标准化提示词:
画质提示词:
通用高画质 best quality,ultra-detailed, masterpiece, hires, 8k 特定高分辨率类型 extremely detailed CG unity 8k wallpaper (超精细的8KUnity游戏CG),unreal engine rendered(虚幻引警渲染)
画风提示词 插画风 illustration, painting, paintbrush 二次元 anime, comic, game CG 写实系 photorealistic, realistic, photograph
2.权重与负面提示词:
①套括号() (white flower) = *1.1权重
②(white flower:1.5) 在括号内直接加:和需要的权重
③(((white flower))) 每多套一层权重就是原来的1.1倍,这里是1.331倍
④多括号{ { {white flower}}} 每套一层额外*1.05倍
⑤方括号[[[white flower]]] 每套一层,额外*0.9倍
3.反向提示词:
顾名思义,反向提示词就是不需要出现在画面中的内容
4.出图参数详解:
4.1采样方法
AI进行图像生成的时候使用的某种特定算法
Euler (a)
适合插画风格
DPM 2M 和2M Karras
速度快
SDE Karras
细节更为丰富
Tips:
带++一般是改进过的算法
4.2面部修复
采用对抗算法识别人物面部并进行修复,类似美图app的智能p脸
4.3平铺/分块
用于生成可以无缝贴满整个屏幕的纹理性图片的,勾选容易出错
4.4提示词相关性