第P6周:好莱坞明星识别

一、前期准备

1. 设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib, warnings

warnings.filterwarnings("ignore")   # 忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

执行结果:

cuda

2.导入数据

import os, PIL, random, pathlib

data_dir = pathlib.Path('./data/')

data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("\\")[1] for path in data_paths]
print(classNames)

执行结果:

['Angelina Jolie', 'Brad Pitt', 'Denzel Washington', 'Hugh Jackman', 'Jennifer Lawrence', 'Johnny Depp', 'Kate Winslet', 'Leonardo DiCaprio', 'Megan Fox', 'Natalie Portman', 'Nicole Kidman', 'Robert Downey Jr', 'Sandra Bullock', 'Scarlett Johansson', 'Tom Cruise', 'Tom Hanks', 'Will Smith']
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
    transforms.RandomHorizontalFlip(),  # 随机水平翻转
    transforms.ToTensor(),  # 将PIL, Image 或numpy.ndarray转换成tensor, 并归一化
    transforms.Normalize(   # 标准化处理--> 转换成标准正太分布(高斯分布), 使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]
    )
])

total_data = datasets.ImageFolder("./data/", transform=train_transforms)
print(total_data)

执行结果:

Dataset ImageFolder
    Number of datapoints: 1800
    Root location: ./data/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)
               RandomHorizontalFlip(p=0.5)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
print(total_data.class_to_idx)

执行结果:

{'Angelina Jolie': 0, 'Brad Pitt': 1, 'Denzel Washington': 2, 'Hugh Jackman': 3, 'Jennifer Lawrence': 4, 'Johnny Depp': 5, 'Kate Winslet': 6, 'Leonardo DiCaprio': 7, 'Megan Fox': 8, 'Natalie Portman': 9, 'Nicole Kidman': 10, 'Robert Downey Jr': 11, 'Sandra Bullock': 12, 'Scarlett Johansson': 13, 'Tom Cruise': 14, 'Tom Hanks': 15, 'Will Smith': 16}

3.划分数据集

train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)

执行结果:

<torch.utils.data.dataset.Subset object at 0x000001EB25DBC2E0> <torch.utils.data.dataset.Subset object at 0x000001EB25DBC100>
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

执行结果:

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、调用官方的VGG-16模型

from torchvision.models import vgg16

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

# 加载预训练模型, 并且对模型进行微调

model = vgg16(pretrained = True).to(device)  # 加载预训练的vgg16模型

for param in model.parameters():
    param.requires_grad = False   # 冻结模型的参数, 在训练的时候只训练最后一层的参数

 # 修改classifier(全连接层)模块的第6层,

# 即:(6):Linear(in_features=4096, out_features=2, bias=True)

# 查看下方打印出来的模型

# model.classifier._modules['6'] = nn.Linear(4096, len(classNames))  # 修改vgg模型中的最后一层全连接层,输出目标类别个数

model.classifier = nn.Sequential(
    nn.Linear(512*7*7, 1024),
    nn.BatchNorm1d(1024),
    nn.Dropout(0.4),

    nn.Linear(1024, 128),
    nn.BatchNorm1d(128),
    nn.Dropout(0.4),
    
    nn.Linear(128, len(classNames)),
    nn.Softmax()

)


model.to(device)
print(model)

执行结果:

Using cuda device
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=1024, bias=True)
    (1): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): Dropout(p=0.4, inplace=False)
    (3): Linear(in_features=1024, out_features=128, bias=True)
    (4): BatchNorm1d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (5): Dropout(p=0.4, inplace=False)
    (6): Linear(in_features=128, out_features=17, bias=True)
    (7): Softmax(dim=None)
  )
)

三、训练函数

1.编写训练函数

## 训练循环

def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)   # 训练集的大小
    num_batches = len(dataloader)    # 批次数目

train_loss, train_acc = 0, 0     # 初始化训练损失和正确率

for X, y in dataloader:  # 获取图片及其标签
    X, y = X.to(device), y.to(device)

    # 计算预测误差
    pred = model(X)
    loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距

    # 反向传播
    optimizer.zero_grad()    # grad属性归零
    loss.backward()          # 反向传播
    optimizer.step()         # 每一步自动更新

    # 记录acc与loss
    train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
    train_loss += loss.item()

train_acc /= size
train_loss /= num_batches

return train_acc, train_loss

2.编写测试函数

def test (dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)   # 批次数目
    test_loss, test_acc = 0, 0

# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
    for imgs, target in dataloader:
        imgs, target = imgs.to(device), target.to(device)

        # 计算loss
        target_pred = model(imgs)
        loss = loss_fn(target_pred, target)

        test_loss += loss.item()
        test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

test_acc /= size
test_loss /= num_batches

return test_acc, test_loss

3.设置动态学习率

# 调用官方动态学习率接口

learn_rate =1e-3
lambda1 = lambda epoch: 0.92 ** (epoch // 4)
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)  #选定调整方法

4.正式训练

import copy

loss_fn = nn.CrossEntropyLoss()  # 创建损失函数
epochs = 40

train_loss = []
train_acc = []
test_loss = []
test_acc = []

best_acc = 0  # 设置一个最佳准确率,作为嘴角模型的判别指标

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    scheduler.step()  # 更新学习率(调用官方动态学习率接口时使用)

model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
# 保存最佳模型到best model
if epoch_test_acc > best_acc:
    best_acc = epoch_test_acc
    best_model = copy.deepcopy(model)

train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)

# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']

template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))

# 保存最佳模型到文件中

PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

执行结果:

Epoch: 1, Train_acc:25.3%, Train_loss:2.701225, Test_acc:31.7%, Test_loss:2.652, lr:1.00E-03
Epoch: 2, Train_acc:45.8%, Train_loss:2.517270, Test_acc:42.5%, Test_loss:2.549, lr:1.00E-03
Epoch: 3, Train_acc:62.4%, Train_loss:2.376256, Test_acc:45.6%, Test_loss:2.513, lr:1.00E-03
Epoch: 4, Train_acc:73.0%, Train_loss:2.263205, Test_acc:49.4%, Test_loss:2.488, lr:9.20E-04
Epoch: 5, Train_acc:82.8%, Train_loss:2.171489, Test_acc:54.7%, Test_loss:2.445, lr:9.20E-04
Epoch: 6, Train_acc:86.6%, Train_loss:2.111034, Test_acc:54.4%, Test_loss:2.440, lr:9.20E-04
Epoch: 7, Train_acc:91.5%, Train_loss:2.060514, Test_acc:54.2%, Test_loss:2.439, lr:9.20E-04
Epoch: 8, Train_acc:94.3%, Train_loss:2.019957, Test_acc:58.1%, Test_loss:2.395, lr:8.46E-04
Epoch: 9, Train_acc:96.0%, Train_loss:1.991039, Test_acc:60.0%, Test_loss:2.376, lr:8.46E-04
Epoch:10, Train_acc:96.9%, Train_loss:1.979146, Test_acc:57.2%, Test_loss:2.388, lr:8.46E-04
Epoch:11, Train_acc:97.6%, Train_loss:1.969196, Test_acc:60.3%, Test_loss:2.380, lr:8.46E-04
Epoch:12, Train_acc:98.1%, Train_loss:1.962847, Test_acc:60.6%, Test_loss:2.370, lr:7.79E-04
Epoch:13, Train_acc:98.5%, Train_loss:1.952939, Test_acc:61.4%, Test_loss:2.377, lr:7.79E-04
Epoch:14, Train_acc:98.6%, Train_loss:1.950777, Test_acc:60.0%, Test_loss:2.383, lr:7.79E-04
Epoch:15, Train_acc:98.9%, Train_loss:1.946038, Test_acc:59.7%, Test_loss:2.367, lr:7.79E-04
Epoch:16, Train_acc:99.0%, Train_loss:1.946594, Test_acc:59.4%, Test_loss:2.400, lr:7.16E-04
Epoch:17, Train_acc:99.4%, Train_loss:1.940797, Test_acc:61.4%, Test_loss:2.384, lr:7.16E-04
Epoch:18, Train_acc:99.4%, Train_loss:1.940632, Test_acc:58.6%, Test_loss:2.381, lr:7.16E-04
Epoch:19, Train_acc:99.6%, Train_loss:1.938285, Test_acc:61.7%, Test_loss:2.360, lr:7.16E-04
Epoch:20, Train_acc:99.4%, Train_loss:1.938684, Test_acc:59.7%, Test_loss:2.360, lr:6.59E-04
Epoch:21, Train_acc:99.5%, Train_loss:1.938040, Test_acc:59.4%, Test_loss:2.361, lr:6.59E-04
Epoch:22, Train_acc:99.7%, Train_loss:1.936073, Test_acc:58.6%, Test_loss:2.365, lr:6.59E-04
Epoch:23, Train_acc:99.6%, Train_loss:1.936016, Test_acc:60.6%, Test_loss:2.354, lr:6.59E-04
Epoch:24, Train_acc:99.9%, Train_loss:1.934400, Test_acc:61.1%, Test_loss:2.347, lr:6.06E-04
Epoch:25, Train_acc:99.7%, Train_loss:1.934313, Test_acc:61.9%, Test_loss:2.344, lr:6.06E-04
Epoch:26, Train_acc:99.8%, Train_loss:1.933916, Test_acc:60.8%, Test_loss:2.364, lr:6.06E-04
Epoch:27, Train_acc:99.8%, Train_loss:1.933582, Test_acc:61.1%, Test_loss:2.356, lr:6.06E-04
Epoch:28, Train_acc:99.7%, Train_loss:1.934784, Test_acc:63.9%, Test_loss:2.352, lr:5.58E-04
Epoch:29, Train_acc:99.9%, Train_loss:1.932888, Test_acc:62.5%, Test_loss:2.339, lr:5.58E-04
Epoch:30, Train_acc:99.9%, Train_loss:1.932713, Test_acc:61.9%, Test_loss:2.343, lr:5.58E-04
Epoch:31, Train_acc:99.7%, Train_loss:1.934161, Test_acc:60.6%, Test_loss:2.342, lr:5.58E-04
Epoch:32, Train_acc:99.9%, Train_loss:1.931782, Test_acc:61.9%, Test_loss:2.350, lr:5.13E-04
Epoch:33, Train_acc:99.9%, Train_loss:1.930995, Test_acc:60.8%, Test_loss:2.342, lr:5.13E-04
Epoch:34, Train_acc:100.0%, Train_loss:1.930503, Test_acc:61.1%, Test_loss:2.342, lr:5.13E-04
Epoch:35, Train_acc:100.0%, Train_loss:1.930512, Test_acc:61.1%, Test_loss:2.349, lr:5.13E-04
Epoch:36, Train_acc:99.9%, Train_loss:1.931295, Test_acc:60.3%, Test_loss:2.363, lr:4.72E-04
Epoch:37, Train_acc:99.9%, Train_loss:1.931137, Test_acc:61.9%, Test_loss:2.365, lr:4.72E-04
Epoch:38, Train_acc:100.0%, Train_loss:1.930198, Test_acc:59.4%, Test_loss:2.370, lr:4.72E-04
Epoch:39, Train_acc:99.9%, Train_loss:1.930910, Test_acc:60.0%, Test_loss:2.354, lr:4.72E-04
Epoch:40, Train_acc:100.0%, Train_loss:1.930276, Test_acc:59.2%, Test_loss:2.358, lr:4.34E-04
Done

四、结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

执行结果:

image-20230908180632608

2.指定图片进行预测

from PIL import Image

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):

    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)

    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./data/Jennifer Lawrence/001_21a7d5e6.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

执行结果:

预测结果是:Jennifer Lawrence

3.模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
print(epoch_test_acc, epoch_test_loss)

# 查看是否与记录的最高准确率一致

print(epoch_test_acc)

执行结果:

0.6277777777777778 2.33515993754069
0.6277777777777778
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值