期刊:农业工程学报
发表时间:2018.04
0.平台配置
- Intel® Xeon® CPU E3-1245 v3@ 3.40GHz 处理器,32GB 运行内存,2T硬盘容量,12GB GTX Titan X GPU,系统为 Ubuntu 14.04。
1.作者要解决的问题
- 解决未成熟芒果与树叶颜色相似的问题(通过嵌入密集连接结构解决)
- 降低树叶、枝干遮挡果实与果实重叠的影响(通过特殊前景区域标注解决)
- 在真实场景下,降低光照多样性及背景复杂性的影响(通过自适应直方图均衡化解决)
2.创新的网络模型及原因
- 改进的 YOLO v2 网络,设计带有密集连接的 Tiny-yolo 结构,该网络可实现多次特征的复用和融合,作者将该网络命名为 Tiny-yolo-dense。
3.相关评价指标水平
- FPS:83
- AP:97.02%
- AR:95.1%
本人认为以上数据指标达到了一个相当不错的水平
4.图像预处理
- 运用自适应直方图均衡化减小光强对图像的影响;同时增加了样本图像光照的多样行,扩增了样本数量。
(本人认为该方法已普遍应用在解决图像明暗差异上,并非值得作者骄傲的创新点) - 作者考虑到树冠上大部分芒果呈竖直悬挂姿态,而部分芒果因枝干或其他芒果的阻挡呈多角度倾斜悬挂姿态,故本文对训练样本进行了水平镜像翻转、以及±10°、±20°旋转操作,并对图像进行居中截取。
5.Tiny-yolo-dense网络结构图及参数表
- 利用密集模块(上图虚线框)代替 Tiny-yolo 的第 7 层卷积层
- 虚线框内的Hi (i=1,2,3,4)表示BN、ReLU及卷积的组合
6.训练样本目标前景区域标注
- anchor区域内将目标背景区域的像素置零,降低非前景特征的干扰,降低树叶、枝干或重叠的非本目标果实等无关信息特征对目标特征提取的影响
- 但保留目标轮廓外围一定区域(5~10 个像素),加强目标边缘的前景区域特征学习
7.结果与分析
- 改进后准确率和召回率相比改进前分别提高了 0.9%和 1.34%
- 对测试集中所有果实准确率和召回率分别提高了 1.5%和 2.38%,对杂物遮挡果分别提高了 2.19%和 4.65%,对重叠果实分别提高了 9.76%和 10.86%
- A表示原始数据;B表示自适应直方图均衡化处理后;C表示旋转处理后
8.本文的不足
- 图像的标注需要的大量的时间,尤其是将anchors内的非前景区域像素置为0
- 嵌入密集连接dense结构,导致网络参数变大,降低了FPS(在所难免)