论文阅读—未成熟芒果的改进 YOLOv2 识别方法

期刊:农业工程学报
发表时间:2018.04

0.平台配置

  • Intel® Xeon® CPU E3-1245 v3@ 3.40GHz 处理器,32GB 运行内存,2T硬盘容量,12GB GTX Titan X GPU,系统为 Ubuntu 14.04。

1.作者要解决的问题

  • 解决未成熟芒果与树叶颜色相似的问题(通过嵌入密集连接结构解决)
  • 降低树叶、枝干遮挡果实与果实重叠的影响(通过特殊前景区域标注解决)
  • 在真实场景下,降低光照多样性及背景复杂性的影响(通过自适应直方图均衡化解决)

2.创新的网络模型及原因

  • 改进的 YOLO v2 网络,设计带有密集连接的 Tiny-yolo 结构,该网络可实现多次特征的复用和融合,作者将该网络命名为 Tiny-yolo-dense

3.相关评价指标水平

  • FPS:83
  • AP:97.02%
  • AR:95.1%

本人认为以上数据指标达到了一个相当不错的水平

4.图像预处理

  • 运用自适应直方图均衡化减小光强对图像的影响;同时增加了样本图像光照的多样行,扩增了样本数量。
    (本人认为该方法已普遍应用在解决图像明暗差异上,并非值得作者骄傲的创新点)
  • 作者考虑到树冠上大部分芒果呈竖直悬挂姿态,而部分芒果因枝干或其他芒果的阻挡呈多角度倾斜悬挂姿态,故本文对训练样本进行了水平镜像翻转、以及±10°、±20°旋转操作,并对图像进行居中截取。

5.Tiny-yolo-dense网络结构图及参数表
在这里插入图片描述

  • 利用密集模块(上图虚线框)代替 Tiny-yolo 的第 7 层卷积层
  • 虚线框内的Hi (i=1,2,3,4)表示BN、ReLU及卷积的组合
    在这里插入图片描述

6.训练样本目标前景区域标注

  • anchor区域内将目标背景区域的像素置零,降低非前景特征的干扰,降低树叶、枝干或重叠的非本目标果实等无关信息特征对目标特征提取的影响
  • 保留目标轮廓外围一定区域(5~10 个像素),加强目标边缘的前景区域特征学习
    在这里插入图片描述

7.结果与分析
在这里插入图片描述

  • 改进后准确率和召回率相比改进前分别提高了 0.9%和 1.34%
    在这里插入图片描述
  • 对测试集中所有果实准确率和召回率分别提高了 1.5%和 2.38%,对杂物遮挡果分别提高了 2.19%和 4.65%,对重叠果实分别提高了 9.76%和 10.86%
    在这里插入图片描述
  • A表示原始数据;B表示自适应直方图均衡化处理后;C表示旋转处理后

8.本文的不足

  • 图像的标注需要的大量的时间,尤其是将anchors内的非前景区域像素置为0
  • 嵌入密集连接dense结构,导致网络参数变大,降低了FPS(在所难免)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值