yolo模型修改后怎么加载预训练权重

本文介绍了解决YoloV3网络模型结构修改后,使用原网络预训练权重出现不匹配的问题。通过将预训练权重视为有序字典,并采用for循环加载部分权重,再手动加载剩余权重的方法来解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

  • 修了yolov3网络模型结构,使用原网络的预训练权重会出现 mismatch 的情况

解决办法

  • 总体思想就是把预训练权重当成一个有序字典处理,其实本质上它就是一个有序字典。有序字典的定义及用法这里不赘述,不了解的自己去查。
  • 采用for循环,加载部分权重。
  • 手动加载剩余权重

代码实现

# 载入与训练权重,此时并未载入网络
ckpt = torch.load(weights, map_location=device)
# 取出网络的模型,其中里面的参数是调用:_initialize_weights(self)生成的
model_state_dict = model.state_dict()
# 将前87层预训练权重赋予模型参数
 for i, (k, v) in enumerate(ckpt["model"].items()):
    if i < 348:
        model_state_dict[k] = v
# 手动添加不匹配参数
model_state_dict['module_list.90.Conv2d.weight'] = ckpt["model"]['module_list.87.Conv2d.weight']
model_state_dict['module_list.90.BatchNorm2d.weight'] = ckpt["model"]['module_list.87.BatchNorm2d.weight']
model_state_dict['module_list.90.BatchNorm2d.bias'] = ckpt["model"]['module_list.87.BatchNorm2d.bias']
... ...
# 保存权重
torch.save(model_state_dict, 'weights.pt')

对于结构删减改动较大的网络,手动加载也挺麻烦的,若找到新的方法,会继续更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值