层次分析法
详细的原理部分参考这篇文章:层次分析法原理
一般在做题时,我们在得到打分矩阵后需要进行层次分析法,下面总结了平时遇到的代码:
% X为打分矩阵
[~,n] = size(X);
[V,D] = eig(X);
Max_eig = max(max(D));
[r,c]=find(D == Max_eig , 1);
disp('特征值法求权重的结果为:');
disp( V(:,c) ./ sum(V(:,c)) )
% % % % % % % % % % % % %下面是计算一致性比例CR的环节% % % % % % % % % % % % %
CI = (Max_eig - n) / (n-1);
RI=[0 0.0001 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59]; %注意哦,这里的RI最多支持 n = 15
% 这里n=2时,一定是一致矩阵,所以CI = 0,我们为了避免分母为0,将这里的第二个元素改为了很接近0的正数
CR=CI/RI(n);
disp(['最大特征值为:' num2str(Max_eig)])
disp(['RI=',num2str(RI(n))])
disp(['一致性指标CI=',num2str(CI)])
disp(['一致性比例CR=',num2str(CR)]);
if CR<0.10
disp('因为CR<0.10,所以该判断矩阵A的一致性可以接受!');
else
disp('注意:CR >= 0.10,因此该判断矩阵A需要进行修改!');
end
这串代码的输入是一个打分矩阵 X X X,输出权重和一致性检验的内容,用特征向量作为权重值,这里还有一点需要注意, R I RI RI的值按理来说当变量为2时, R I RI RI的值为0,但是为了能够进行除法,所以我们令 R I RI RI等于0.0001。
实例
clc;clear
A = [1 3 1/5 6 1/2 5 8
1/3 1 1/4 5 1/3 2 4
5 4 1 8 2 5 6
1/6 1/5 1/8 1 1/5 1/3 1/2
2 3 1/2 5 1 5 7
1/5 1/2 1/5 3 1/5 1 2
1/8 1/4 1/6 2 1/7 1/2 1
]; % 这里导入判断矩阵然后运行
[n,n] = size(A);
[V,D] = eig(A);
Max_eig = max(max(D));
[r,c]=find(D == Max_eig , 1);
disp('特征值法求权重的结果为:');
disp( V(:,c) ./ sum(V(:,c)) )
% % % % % % % % % % % % %下面是计算一致性比例CR的环节% % % % % % % % % % % % %
CI = (Max_eig - n) / (n-1);
RI=[0 0.0001 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59]; %注意哦,这里的RI最多支持 n = 15
% 这里n=2时,一定是一致矩阵,所以CI = 0,我们为了避免分母为0,将这里的第二个元素改为了很接近0的正数
CR=CI/RI(n);
disp(['最大特征值为:' num2str(Max_eig)])
disp(['RI=',num2str(RI(n))])
disp(['一致性指标CI=',num2str(CI)])
disp(['一致性比例CR=',num2str(CR)]);
if CR<0.10
disp('因为CR<0.10,所以该判断矩阵A的一致性可以接受!');
else
disp('注意:CR >= 0.10,因此该判断矩阵A需要进行修改!');
end
运行结果: