基于insightface实现人脸注册和识别对比

下面是一个完整的示例代码,演示如何使用 insightface 库实现人脸注册和对比。此示例包括人脸检测、特征提取、注册新的人脸以及对比已注册的人脸特征。

安装依赖

首先,确保你已经安装了 insightface 库:

pip install insightface

人脸注册与对比

以下代码演示了如何使用 insightface 进行人脸注册和对比:

import cv2
import numpy as np
from insightface.app import FaceAnalysis
from sklearn.metrics.pairwise import cosine_similarity

# 初始化 ArcFace 模型
app = FaceAnalysis(providers=['CUDAExecutionProvider'])  # 使用 GPU,若无 GPU 可移除 providers 参数
app.prepare(ctx_id=0, det_size=(640, 640))

# 注册的人脸数据库 (用字典存储人脸名称和特征向量)
registered_faces = {}

# 注册新的人脸
def register_face(img_path, name):
    img = cv2.imread(img_path)
    faces = app.get(img)
    if faces:
        embedding = faces[0].embedding
        registered_faces[name] = embedding
        print(f"Registered {name}")
    else:
        print(f"No face detected in {img_path}")

# 对比人脸
def recognize_face(img_path):
    img = cv2.imread(img_path)
    faces = app.get(img)
    if not faces:
        print(f"No face detected in {img_path}")
        return

    embedding = faces[0].embedding
    max_sim = 0
    recognized_name = None

    for name, reg_embedding in registered_faces.items():
        sim = cosine_similarity([embedding], [reg_embedding])[0][0]
        if sim > max_sim:
            max_sim = sim
            recognized_name = name

    return recognized_name, max_sim

# 示例:注册人脸
register_face('path/to/your/image1.jpg', 'Person1')
register_face('path/to/your/image2.jpg', 'Person2')

# 示例:识别人脸
test_img_path = 'path/to/your/test_image.jpg'
recognized_name, similarity = recognize_face(test_img_path)
if recognized_name:
    print(f"Recognized: {recognized_name}, Similarity: {similarity:.2f}")
else:
    print("No matching face found")

代码解释

1. 初始化 ArcFace 模型:

app = FaceAnalysis(providers=['CUDAExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

这部分代码初始化了 insightface 库的 ArcFace 模型,并准备在 GPU 上运行。如果没有 GPU,可以移除 providers 参数。

2. 注册新的人脸:

def register_face(img_path, name):
    img = cv2.imread(img_path)
    faces = app.get(img)
    if faces:
        embedding = faces[0].embedding
        registered_faces[name] = embedding
        print(f"Registered {name}")
    else:
        print(f"No face detected in {img_path}")

这个函数从给定的图像路径中读取图像,检测人脸并提取特征向量,然后将特征向量存储在 registered_faces 字典中。

3.识别人脸:

def recognize_face(img_path):
    img = cv2.imread(img_path)
    faces = app.get(img)
    if not faces:
        print(f"No face detected in {img_path}")
        return

    embedding = faces[0].embedding
    max_sim = 0
    recognized_name = None

    for name, reg_embedding in registered_faces.items():
        sim = cosine_similarity([embedding], [reg_embedding])[0][0]
        if sim > max_sim:
            max_sim = sim
            recognized_name = name

    return recognized_name, max_sim

这个函数从给定的图像路径中读取图像,检测人脸并提取特征向量,随后与已注册的人脸特征进行比较,基于余弦相似度原理, 返回最匹配的人脸名称和相似度。

使用示例

注册人脸:

register_face('path/to/your/image1.jpg', 'Person1')
register_face('path/to/your/image2.jpg', 'Person2')

识别人脸:

test_img_path = 'path/to/your/test_image.jpg'
recognized_name, similarity = recognize_face(test_img_path)
if recognized_name:
    print(f"Recognized: {recognized_name}, Similarity: {similarity:.2f}")
else:
    print("No matching face found")

这个示例只是展示大概的逻辑,实际应用时还要把人脸注册数据保存到数据库中等等操作,希望对你有帮助!

### 使用 InsightFace 构建人脸识别上课签到系统 #### 准备工作 为了构建一个人脸识别上课签到系统,首先需要安装必要的依赖项。这包括Python环境以及InsightFace库。 确保已安装最新版本的pip并执行以下命令来设置开发环境: ```bash git clone https://github.com/deepinsight/insightface.git cd insightface pip install -r requirements.txt pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu ``` 上述操作会下载InsightFace源码,并安装所需的Python包[^2]。 #### 加载模型与初始化 加载预训练好的人脸检测特征提取模型对于后续处理至关重要。下面展示如何通过官方API快速获取这些资源: ```python from insightface.app import FaceAnalysis app = FaceAnalysis(allowed_modules=['detection', 'recognition']) app.prepare(ctx_id=0, det_size=(640, 640)) ``` 这段代码创建了一个`FaceAnalysis`实例对象用于管理不同模块的工作流程;其中允许使用的两个主要组件分别是`detection`(负责识别人脸位置) `recognition`(用来计算面部描述符)[^2]。 #### 实现签到逻辑 当学生进入教室时,摄像头捕捉图像并将捕获的数据送入程序中进行分析。如果匹配成功,则记录该生出席情况。以下是简化版的核心算法实现方式: ```python import cv2 def check_in(image_path): img = cv2.imread(image_path) faces = app.get(img) for face in faces: embedding = face.normed_embedding # 假设有一个预先存储的学生脸部嵌入向量列表 known_embeddings[] matches = compare_faces(embedding, known_embeddings) if any(matches): student_id = find_matching_student_id(matches) log_attendance(student_id) def compare_faces(target_emb, embeddings_list): from numpy.linalg import norm distances = [norm(target_emb - emb) for emb in embeddings_list] return [dist < threshold for dist in distances] # 需要定义函数find_matching_student_id() log_attendance() ``` 此部分实现了基本的人脸对比机制,即遍历每张检测到的脸部区域,将其转换成固定长度的数值表示形式(embeddings),并与数据库中存在的样本做相似度比较。一旦找到最接近的目标个体,就更新其考勤状态[^1]。 #### 数据管理安全性考虑 考虑到隐私保护的重要性,在实际部署过程中应当采取适当措施保障个人信息安全。例如采用加密技术保存敏感数据、定期清理不再活跃账户的信息等做法均有助于提高整体系统的可信度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值