工程力学(14)—弯曲内力

一:受弯杆件的简化

静定梁:简支梁,外伸梁,悬臂梁

简支梁,即指梁的两端搁置在支座上
外伸梁:梁一端或两端伸出支座之外
悬臂梁:梁的一端为不产生轴向、垂直位移和转动的固定支座,另一端为自由端。

请添加图片描述

二:剪力和弯矩

1:定义

剪力:平行于横截面的内里合力
弯矩:垂直于横截面内力系的合力偶矩

2:方向的判断

对于剪力:左上右下为正。(对所选梁段上任意一点的矩为顺时针转向)

对于弯矩:即左顺右逆为正。(使得梁向下凹为正)

for example:

请添加图片描述

请添加图片描述
首先利用空间任意力平衡的条件列出方程:解出各个力的大小,然后通过截面法进行分析,判断方向即可。
注意:比如对于左半部分,因为剪力的正方向左上右下,所以假设剪力的方向向下,得到上图方程,当然也可以利用三平行力平衡算出,右侧剪力的大小,然后根据他的方向判断正负号。
弯矩的方程也是如此,先假设要求弯矩的截面,弯矩为正,列出方程,得出结果

左右截面得出的结果必定相同。

三:剪力方程和弯矩方程,剪力图与弯矩图

exempli gratia1:

请添加图片描述
第一步:任选一截面分析剪力和弯矩
第二步推广:即可得到对应表达式子
第三:画图,得到剪力图和弯矩图

注:显而易见,弯矩方程的求导等于剪力方程(很重要)

exempli gratia2:

请添加图片描述
第一步:利用平衡方程确定约束力
第二步:分段表示他的剪力与弯矩
第三步:画出图像,标明极值
(应力集中的位置,弯矩图不发生突变)

exempli gratia3:

请添加图片描述
同样的
第一步:利用平衡方程确定约束力
第二步:分段表示他的剪力与弯矩
第三步:画出图像,标明极值
(力偶的作用不改变剪力图像,弯矩图像此时发生突变,力偶为顺时针时增大,逆时针时减小。同样的我们可以知道,弯矩方程的导数就是剪力方程。通过对剪力方程积分得到通解,利用截面分析某点的弯矩大小代入这一点的数值,得到弯矩方程)

exempli gratia4:

请添加图片描述
同样的
第一步:利用平衡方程确定约束力
第二步:表示他的剪力与弯矩
第三步:画出图像,标明极值
通过对剪力方程积分得到通解,利用截面分析某点的弯矩大小代入这一点的数值,得到弯矩方程

总结:

1:剪力方程是弯矩方程的导数
2:集中力只会造成剪力图的突变。
3:力偶不会改变剪力图,只会改变弯矩图,且对弯矩图产生突变。

例题:

请添加图片描述

请添加图片描述

例题:

请添加图片描述

请添加图片描述
注意:Fay,Fby不是截面上剪力的方向

例题:

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值