2024年10月6日 —— 镜像视界(浙江)科技有限公司隆重宣布,其在计算机视觉领域取得重大突破,成功研发出通过视频像素实现视频中动态目标无感定位的创新技术。该技术利用高精度的视频处理和深度学习算法,实现了在复杂动态环境下对目标的精准定位和追踪,无需依赖传统的定位设备。
技术亮点
像素级高精度定位:通过对视频中每个像素的实时分析,系统能够以像素级精度识别并定位动态目标,显著提升了定位的准确性。
无感知定位:无需在目标上安装任何传感器或定位设备,避免了对目标的干扰,实现了真正的无感定位。
实时性与高效性:采用自主研发的高效算法和分布式计算架构,系统能够在毫秒级时间内完成对海量视频数据的处理,满足实时定位的需求。
广泛的适用性:技术适用于多种复杂场景,包括弱光、遮挡、密集人群等,具备强大的环境适应能力。
技术实现详解
1. 高分辨率视频采集与预处理
先进的摄像设备:采用高分辨率摄像头,确保采集到的原始视频数据具有足够的细节,以支持像素级的分析。
图像预处理:在视频输入阶段进行降噪、色彩校正和边缘增强等处理,提高图像质量,为后续的分析奠定基础。
2. 基于深度学习的像素级分析
卷积神经网络(CNN):利用CNN对视频帧进行逐像素分析,识别目标的特征和位置。
目标检测与识别:采用先进的目标检测算法(如YOLOv5、Faster R-CNN),实现对多种目标的准确识别,包括行人、车辆、物体等。
语义分割:通过语义分割技术,将视频中的每个像素归类到特定的目标类别,提升定位的精细度。
3. 多目标跟踪与轨迹预测
多目标跟踪(MOT):结合数据关联和运动预测算法,实现对多个动态目标的持续跟踪,解决目标遮挡和消失的问题。
轨迹预测:利用长短期记忆网络(LSTM)等时序模型,对目标的运动轨迹进行预测,提高定位的稳定性和连续性。
4. 分布式计算与边缘计算
高效的数据处理架构:采用分布式计算,将海量的视频数据分散到多个节点进行并行处理,提升计算效率。
边缘计算:在摄像头或本地服务器上部署部分计算任务,降低数据传输延迟,满足实时性的要求。
5. 无感定位的实现
视觉定位替代传统传感器:通过视觉信息直接获取目标的位置,无需GPS、RFID等传统定位手段,降低了系统的复杂度和成本。
隐私保护:不需在目标上安装设备,减少对个人隐私的侵扰,符合相关法律法规。
应用场景
智能交通:在道路监控中实时定位和跟踪车辆,优化交通信号控制,缓解交通拥堵。
无人驾驶:为自动驾驶车辆提供精准的环境感知和目标定位,提升驾驶安全性。
安防监控:在公共场所对可疑目标进行无感定位和追踪,提高安全防范能力。
智慧物流:在仓储和配送中心,对货物和设备进行实时定位,优化物流流程。
智能制造:在生产线中,对移动的零部件和设备进行定位,提高生产效率。
镜像视界的CEO表示:"这项技术的突破,源于我们对计算机视觉和人工智能的深入研究。通过对视频像素的深度挖掘,我们实现了在复杂环境下对动态目标的精准定位。这将为多个行业带来革命性的变化。"
关于镜像视界(浙江)科技有限公司
镜像视界(浙江)科技有限公司是一家专注于视觉智能技术研发的高科技企业。公司汇聚了来自全球的顶尖技术人才,致力于通过创新的计算机视觉和视频处理技术,为各行业提供领先的解决方案。