该报告由甲子光年智库发布,深入剖析了 AI Agent 行业的发展,涵盖从基础概念到未来趋势与挑战的多方面内容。
AI Agent 的全球认知与发展演进
-
概念起源与发展:起源于哲学,在计算机科学和人工智能领域,是具自主性、感知和决策能力的实体。大模型推动其从实验室走向实际应用,从 “工具” 转变为 “协作者”。
-
与传统 AI 的区别:在任务触发、决策机制、交互模式和能力边界上与传统 AI 工具差异显著,如能自主启动任务、目标驱动决策等。
AI Agent 的技术突破与行业重构
-
核心能力剖析:通过感知层、决策层和进化层的能力重构,从任务执行者向决策主体跨越,将覆盖多数企业复杂决策场景。
-
工作范式变革:引发生产力范式双重革命,推动工作流从过程执行转向结果导向的智能编排。
-
企业软件变革:重构企业服务的交互层、逻辑层和价值层,成为企业级软件服务破局点。
AI Agent 的商业实践与场景突破
-
商业模式创新:继承 APP 分发能力,在服务进化、收益匹配和协同进化上实现突破,预计企业服务交付占比将提升。
-
场景应用广泛:覆盖企业生产经营和个人生活娱乐全场景,金融、医疗等行业率先突破,成为经济增长核心引擎。
-
产业格局与厂商动态:大模型竞争进入下半场,AI Agent 产业竞争白热化,各类企业在不同层面展开竞争与创新。
AI Agent 的未来趋势与挑战
-
发展趋势:呈现轻量化、可持续与泛在智能特点,算法创新和算力突破成为关键,小模型、低能耗等技术推动发展。
-
面临挑战:技术上面临算力瓶颈、数据难题和跨场景协作不足;应用中存在可解释性和信任问题;伦理与治理方面有法律空白、公平失衡等问题。