(深度学习记录)第TR5周:Transformer中的位置编码详解

🏡我的环境:

  • 语言环境:Python3.11.4
  • 编译器:Jupyter Notebook
  • torcch版本:2.0.1  
  • import numpy as np
    import matplotlib.pyplot as plt
    def getPositionEncoding(seq_len,d,n=10000):
        P = np.zeros((seq_len,d))
        for k in range(seq_len):
            for i in np.arange(int(d/2)):
                denominator = np.power(n,2*i/d)
                P[k,2*i]    = np.sin(k/denominator)
                P[k,2*i+1]  = np.cos(k/denominator)
            return P
        
    P = getPositionEncoding(seq_len=4,d=4,n=100)
    print(P)

def plotSinusoid(k,d=512,n=10000):
    x = np.arange(0,100,1)
    denominator = np.power(n,2*x/d)
    y = np.sin(k/denominator)
    plt.plot(x,y)
    plt.title('k =' + str(k))

fig = plt.figure(figsize=(15,4))
for i in range(4):
    plt.subplot(141+i)
    plotSinusoid(i*4)

 

P   = getPositionEncoding(seq_len=100,d=512,n=10000)
cax = plt.matshow(P)
plt.gcf().colorbar(cax)

 

二、小结

 Transformers 使用智能位置编码方案,其中每个位置/索引都映射到一个向量。因此,位置编码层的输出是一个矩阵,其中矩阵的每一行代表序列中的一个编码对象与其位置信息相加。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值