2020年国务院国资委正式印发《关于加快推进国有企业数字化转型工作的通知》,系统明确国有企业数字化转型的基础、方向、重点和举措,开启了企业数字化转型的新篇章。
数字化转型对企业来说变得至关重要,经过数字化成功转型的企业,能够连接和吸引更多的客户,加速创新,并在所在行业获得更大的利润份额。然而,即使数字技术应用已成为企业关注的核心竞争力,但企业数字化转型的失败率仍高达到80%以上,转型之路困难重重。
本文将从数字化变革的失败原因、如何低成本实现数字化转型、构建数字化转型领导组织及人才梯队、为什么数据中台是数字化转型的利器四个方面阐述,希望可以带给正在数字化转型路上的读者一点启发。
1
数字化变革的失败的5大原因
从互联网1.0时期至今,中国传统企业数字化转型十余年,整体效果并不理想,因为在推动转型过程中由于“技能不足”和“机制不足”交织在一起,造成了各种转型的败局。常见的错误包括5种:
数字化转型方向错误,导致技术和业务脱节;
数字化转型技术路线错误,导致技术和业务不融合、数据烟囱林立;
数字化转型产生的业务价值低,无法赋能业务;
没有完整的数字化转型体系;
缺少数字化人才,以及上下不统一。
其中,最为致命的是最后一点,企业上下对于数字化的认知是否一致,直接决定了转型的成败。对于企业高层来说,他们有自己的想法和视野,但是中层、基层对数字化转型路线是否有清晰的认识,CEO和董事会并不一定清楚。有些企业虽然规模很大,但只有几个人在思考数字化战略。毕竟企业中真正具备思考未来战略能力的人是少数。CEO的想法如果没有让中层和到基层领悟,企业对于转型的态度就无法统一。
不仅如此,上下不统一还体现在KPI上。各个部门的数字化转型KPI是不一样的。很多企业高喊着“数字化转型很重要”的口号,但各部门执行过程中使用的还是传统的工作方法,因为这样才能毫不费力地完成KPI。找到具备数字化转型经验的人才和数字化运营人才至关重要。但仅完成人员的配置还是不行,这些人才要形成合理的闭环,才能实现预期的效果。
有时企业数字化转型过程中会打破以前稳定的利益格局,触碰一些人的利益。比较常见的一种情况是,企业在数字化转型成功之后,以前的一些人可能不再适合做现在的工作,此时企业需要处理好各角色之间的关系。这涉及到很多技术和业务混合的情况,所以企业很难找到巧妙的解决办法。其实企业在转型开始就埋下了这颗种子,规模大、非市场化的公司对此尤为发愁。
2
构建数字化转型领导组织及人才梯队
正如上文所说,数字化不仅仅关乎IT和技术,更关乎组织的整体转型——组织需要重新定义员工的思维模式、工作方式和全新文化理念。数字化人才发展的“破局之道”是以用户为中心,激活员工成长的思维模式,连接工作场景和职业生涯发展,充分应用数字化技术,打造开放、共享的人才发展新环境。具体如何构建数字化转型组织和人才梯队需要考虑以下几点。
01 组织架构搭建
组织架构的搭建需要考虑以下5个因素。
领导力。领导素质、知识水平、领导行为和领导战略是搭建架构的重中之重。
预算成本控制。根据预算规定的收入与支出标准检查和监督各个部门的生产经营活动,保证各项活动和各个部门充分达成既定目标,既能获得收益,又能合理利用资源。
战略规划。制定组织的长期目标并将其付诸实施,谋划重大、全局性的任务。
技术水平。科技的发展日新月异,领导者必须了解行业技术发展动态,才能制定出符合当前技术发展水平、与公司发展情况相匹配的政策。
经营模式。将经营模式集成到当前的业务模式,以抵御数智业务在不断变化的环境中可能面临的风险。并将数字化融入设计和工艺,确保转型有序、稳定地推进。
02 确定数字化转型业务的核心负责人
在数字化转型业务中选对核心的负责人是关键。业界普遍认为数字化转型是个“一把手工程”,负责人应该在企业内既对业务十分熟悉,又有话语权。因此,常见的数字化转型负责人往往是由CIO、 CTO,以及 CDO来担任。
无需多言,CIO和CTO是信息管理者,企业在数字化过程中面临最重要的挑战是数据的复杂性。这就需要核心负责人有能力给出合适的解决方案。与这两个角色不同,CDO的岗位职责则是带领团队梳理业务线,基于数据提炼业务价值,利用数据解决业务问题。CDO既要对数字化技术了然于胸,又要对企业业务、数字化战略有深刻的认识。
03 如何选拔和留住人才
定好数字化转型负责人后,接下来需要考虑的就是如何选拔和留住人才了。因为不论数字化转型方案如何完美,都需要有专业的人才来执行才能落地。数字化人才需要了解并掌握相关技术、数据和业务,能实现业务创新。鉴于同时具备这种综合能力的人才比较少,企业也可以将具备技术、数据、业务等单方面能力的人才进行组合,以团队的形式实现业务创新(如图1所示)。企业在选拔数字化人才时首先要注意,不能以技术实力为核心选拔标准,而是要以数字化转型预期目标来主导数字化人才的选拔。
图1:数字化团队赋能数字化转型
同时,创建数字化工作场所也是吸引人才、加速数字化落地的方法之一。企业可以利用技术优势(如数据分析工具、云办公软件、基于员工行为的算法等)并将其部署在数字化工作场所,从而改变员工的工作方式,提升其创造力及工作效率。数字化工作场所是以新的方式做传统的工作,缺乏数字化工作场所的数字化团队,会逐渐失去数字化创新能力,数字化人才也会很快被同化为传统的人才。
3
如何低成本实现数字化转型?
从传统企业到数字化企业的转型,需要引起变革的要素并不完全统一,如果企业想要顺利完成数字化转型可以参考“数字化转型六图法“(如图2所示)。它从6个角度给出了数字化转型的思路。
图2:数字化转型6图法
01 战略地图
企业想要转型,第一步便要梳理战略方向,形成战略地图。梳理战略地图涉及战略目标、业绩目标、KPI类型、KPI增长方式、KPI增长价值等内容。
以银行为例,某银行希望明年的利润提升到1亿元,可以将这个利润目标拆解为一级一级的小目标逐步实现,评估和配给不同模块所需的资源。譬如可将全年利润收入分解为营销带动的营收目标、客服中心的营收目标、零售网均的营收目标等。
企业在构建战略地图时,首先要梳理三到五年的规划,并明确新的战略目标,确定从上到下推行战略的执行步骤,促使战略行动的高度集中。以某银行制定战略地图为例,其三到五年的战略愿景为“超常规发展大零售,大幅提升对银行的利润贡献”;战略路径为“深度客户运营、丰富产品服务、推动产能提升、加速渠道转型”,并细化了战略目标的实现路径(如图3所示)。
图3:某银行梳理的战略地图
梳理战略地图,确定战略目标固然重要,但战略目标的实施路径、实施节奏和实施手段同样重要。
当企业完成内部战略和外部战略的梳理后,便需要总结新的战略目标及战略愿景。企业需要将战略目标分解成不同环节的目标,明确存量目标及二级目标。譬如零售企业在制定明年全年的销售目标时,需要对今年销售目标的完成情况进行梳理。结合市场发展、供应商变动等外部情况,制定合理的年销售目标。再将年销售目标按照月份、部门等维度细化,明确每个阶段的销售目标,确定阶段性销售目标的实施路径。
企业完成了总体战略目标和阶段目标的制定后,还需要对相应目标的实现路径和方式有清晰的认知,从而匹配合适的战略执行路径及实施策略,同时要确保战略目标能够按照计划有序推进、稳定落实。
02 业务地图
业务地图是企业实现战略地图的行动方案,包括业务流程和业务方式。企业只有梳理了业务地图,才能清楚哪些业务环节可以优化、重组。
企业若拥有不同维度的业务,特别是核心业务,在规划初期便应分解出相关举措,将现有业务架构进行梳理,分析当前面临的问题及痛点(如图4所示)。
图4:业务地图示例
企业中层需要参与公司核心业务的梳理工作,可以先梳理关键业务及关键环节,包括业务部门待优化之处、组织架构待调整之处、待实现数据智能化运用之处等。例如,某零售企业在梳理业务地图时,某项关键业务可能就涵盖了上万个类别的办公用品,在这些分类中又有子分类和不同的产品型号。除了产品品类,该企业的关键业务环节可能包括定制服务、售后服务等。这些都是该企业的核心业务,需要在梳理业务地图时特别注意,明确优先处理的事务及环节。在完成业务地图的梳理后,企业可以更高效、低成本地用数字技术和方法达到战略目标。
03 需求地图
如今,企业对数据赋能业务的认识越来越深刻,利用数字技术满足业务需求、实现业务创新,争取更多的客户资源,增加企业收入,是企业进行数字化转型的目的。企业在梳理业务地图的基础上,可以进一步制定一套满足业务需求的体系——需求地图(如图5所示)。
图5:需求地图示例
04 应用地图
应用地图必须具灵活,可以随着业务需求的变化做出相应调整,时刻满足多变的业务需求,推动销售增长。针对不同业务的问题,企业可以搭建多个应用地图,帮助运营部门实现数据赋能业务。
05 算法地图
算法地图是根据业务关系进行梳理的算法规划图。算法地图可分为统计模型、挖掘模型、AI 模型、行业模型、函数库和算法库等几部分。其中以决策树、K-means 聚类、因子分析为代表的统计模型采用数学统计方法建立,可应用于人群分类、用户分群、满意度调查。企业在创建算法地图时可根据业务关系梳理出不同业务线上的模型地图(如图6所示)。
图6:算法地图示例
随着算法不断发展和完善,算法应用成为企业提升竞争力的手段。广泛应用于各行各业,比如新零售企业的客户精准运营系统,就是利用算法研发客户流失预警模型、客户交叉销售模型;政府公安部门通过算法研究犯罪行为,预测相关区域的犯罪率,构建平安社区。
06 数据地图
当企业完成战略、业务、需求、应用、算法地图的梳理后,需要进一步构建数据地图。数据地图作为一种以图形为表达形式的数据资产管理工具,可以对数据中台汇聚的所有数据进行统一查询、管理(如图7所示)。
图7:数据地图构建路径
4
数字化转型的利器——数据中台
谈数字化转型不得不谈数据中台,这也是当下非常热门的话题。虽然数据中台在互联网企业中已经有了多年的实践,但是对于传统企业来说还是一个比较新的话题。
那为什么要建数据中台呢?
数据中台是数字化中台的核心,也是数字化转型的技术基础架构,是转型的载体。
中台战略并不是一个纯技术概念的数据堆砌,而是将企业的核心能力、数据、用户信息以共享服务的形式加以沉淀,避免各业务部门重复建设、降低新业务生产的成本,使得大多数业务需求由业务团队自行接入(如图8所示)。这种将数据和业务融为一体的模式不仅实现了公司内外信息的流通、提高了内部创新力。同时因为满足了用户现在和潜在的需求,数据价值被不断挖掘出来,确保企业保持竞争力。
图8:中台战略是实现企业数字化的重要战略举措
很多企业在建设数据中台时容易走入误区,导致建设失败。主要体现在以下几个方面。
01 将数据中台建设成数据仓库
很多企业都是为了建数据中台而建,因而市场上出现了很多假中台、伪中台。最常见的失败情况是将数据中台建成一个大型数据仓库,将其定义为数据中台。这种“数据中台”属于伪中台,只起到数据仓库的作用,并不具备完整的数据中台功能。
02 数据中台不具有适配性
数据中台要根据企业自身的业务性质进行搭建。有些企业可能会购买现成的数据中台,但这种数据中台并不具备定制性,不能随着企业的发展同步满足业务需求。如果一家企业的数据中台在启用过程中忽略了运营、管理等组织的配合,仅仅依靠数据中台的技术能力,这种中台运用模式产生的效果会打折扣。
03 将数据中台建设成系统
市场上很多数据中台供应商都在卖“系统“,企业使用一段时间就会发现效果并不理想。数据中台只是实现数字化转型的手段,而提升业绩才是企业转型的目标。企业需要基于数据中台这个手段构建自身的数字化转型能力和业绩提升能力。
总之,数据中台对企业的长远发展具有重要意义。但企业对数据中台有认知误区也会导致建设风险。除了上述提到的几点,建设中台也需要考虑兼容的问题,需要变革技术架构和更新产品体系等。一旦中台搭建错误,基于中台产生的应用也会出现问题,重新搭建的代价是非常大的。因此,企业要保障数据中台建设的正确性,并注意各个建设内容的迁移。
4
结束语
在今天,人类正在跨入“第四次工业革命“的洪流,促进数字和实体经济融合发展,加速新旧发展动能转换,打造新的产业和业态成为了社会走向现代化的关键举措。数字化正在开启一个”元宇宙“,而对传统企业来讲数字化转型是“箭在弦上不得不发”,在这一进程中,避开数字化转型的弯路,快速构建企业的数字化转型六大地图,并建立强有力的组织保障协同落地,才是转型的成功之道。
--------END--------