[Tushare+Python] AH股轮动策略基础

本文介绍使用Tushare和Python进行AH股轮动策略的基础数据处理,包括AH溢价计算和数据清洗,旨在确定股票溢价率的历史分位数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[Tushare+Python] AH股轮动策略基础

摘要:为做AH股轮动策略需进行基础数据处理,这里代码主要涉及AH溢价计算及相关数据清洗。



前言

核心思路:计算AH股溢价率并计算每个股票当前溢价率在其历史分位值上位置,为后续策略提供基础信息。

一、记录尚未解决的问题

  1. 合并AH股数据需要找到唯一索引key,经几次merge,发现可按公司fullname进行交集合并。截至2021年6月10日,同时在AH股上市的公司(除去ST)共130家。而按fullname合并可以获得126家数据,对于初步探索尚可接受。 后续可找出这4家再手动调整。
  2. H股数据尚未复权(已解决)
  3. 因AH除权除息日期可能不同,除权因子也可能不同,采用何种复权方式以及如何处理除权除息还需考虑

二、数据处理清洗

代码如下:

import matplotlib.pyplot as plt
import pandas as pd
import tushare as ts
import time
import datetime as dt
pro= ts.pro_api()

'''
P1:
obtain tickers of AH share, named as stock_list_H,stock_list_A
'''

# step 1.1 : obtain all stock_ticker in A and H

df_H_bas = pro.hk_basic(fields='ts_code,fullname,list_date').rename(columns= {'list_date':'list_H','ts_code':'ts_code_H'})

df_A_bas= pro.stock_basic(exchange='', list_status='L', fields='ts_code,symbol,fullname,area,industry,list_date,is_hs').rename(columns= {'list_date':'list_A','ts_code':'ts_code_A'})

# step 1.2 : inner merge
df_com = pd.merge(df_H_bas,df_A_bas,how= 'inner',on = ['fullname&
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值