机器学习中的(classification)交叉熵损失和稀疏交叉熵损失(sparse cross-entropy loss)

1.交叉熵损失是一种常用的损失函数,特别适用于分类问题。它用于衡量模型的预测结果与真实标签之间的差异。

假设我们有一个分类问题,其中每个样本属于一类,并且每个样本都有一个对应的真实标签。交叉熵损失通过比较模型的预测概率分布与真实标签的概率分布来度量模型的性能。

具体来说,交叉熵损失基于信息论中的概念,衡量了两个概率分布之间的差异。在分类问题中,模型的输出通常表示为一个概率分布,使用softmax函数将原始输出转换为概率值。真实标签可以表示为一个只有一个元素为1,其余为0的概率分布。交叉熵损失通过计算这两个概率分布之间的交叉熵来度量它们的差异。

数学上,对于一个样本,假设模型的预测概率分布为p,真实标签的概率分布为q,则交叉熵损失可以表示为以下公式:

L = -∑(q_i * log(p_i))

其中,i表示类别的索引,q_i表示真实标签的第i个元素,p_i表示模型预测的第i个类别的概率。

交叉熵损失的值越小,表示模型的预测结果与真实标签之间的差异越小,模型性能越好。

在训练过程中,通常使用随机梯度下降等优化算法来最小化交叉熵损失,从而调整模型的参数,使其能够更好地逼近真实标签的分布。

总结,交叉熵损失是一种常用的损失函数,用于衡量模型预测结果与真实标签之间的差异。它在分类问题中广泛应用,并在训练过程中用于指导模型的优化。

2.稀疏交叉熵损失是交叉熵损失的一种变体,特别适用于具有大量类别的分类问题。它在处理具有稀疏标签的数据集时非常有用。

在机器学习中,通常使用独热编码(one-hot encoding)来表示类别标签。独热编码是一种表示方式,其中一个类别被表示为一个长度为类别总数的向量,只有一个位置为1,其他位置为0。例如,对于10个类别的问题,每个类别的独热编码可能如下所示:

类别1:[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
类别2:[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
...
类别10:[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

然而,在许多实际问题中,标签往往是稀疏的,即每个样本只有一个非零标签。例如,一个文本分类任务中,每个样本只属于一个类别。在这种情况下,使用独热编码来表示标签会造成许多零元素,浪费了空间和计算资源。

稀疏交叉熵损失通过使用整数索引来表示标签,而不是独热编码,来解决这个问题。具体来说,对于每个样本,真实标签直接表示为其对应类别的整数索引。例如,对于一个10个类别的问题,每个样本的真实标签可能是以下整数之一:1, 2, 3, ..., 10。

稀疏交叉熵损失使用了与交叉熵损失相同的公式,但在计算损失时,它只考虑模型输出的对应类别的概率。换句话说,它不需要将输出概率与独热编码的标签进行比较,而是直接将输出概率与整数索引的标签进行比较。

稀疏交叉熵损失的目标是最小化模型输出与真实标签的差异,以便训练模型能够正确地预测类别索引。

在实际应用中,稀疏交叉熵损失通常与适当的激活函数(如softmax)结合使用,以获得模型对多类别分类问题的概率分布输出。

稀疏交叉熵损失是交叉熵损失的一种变体,适用于具有稀疏标签的分类问题。它通过使用整数索引来表示标签,节省了空间和计算资源,并在训练过程中帮助模型学习正确的类别预测。

  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二分类问题交叉熵损失函数是一种常用的损失函数,它可以用来衡量模型输出的概率分布与真实标签的差异。其公式如下: $$ J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}\log(h_{\theta}(x^{(i)}))+(1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))] $$ 其,$m$表示样本数量,$y^{(i)}$表示第$i$个样本的真实标签(0或1),$h_{\theta}(x^{(i)})$表示模型对第$i$个样本的预测概率,$\theta$表示模型的参数。 交叉熵损失函数的含义是,对于每个样本,如果真实标签为1,则希望模型输出的概率也越接近1越好;如果真实标签为0,则希望模型输出的概率也越接近0越好。同时,交叉熵损失函数也具有良好的数学性质,可以通过梯度下降等优化算法来求解模型参数。 下面是一个使用交叉熵损失函数训练二分类模型的示例代码: ```python import numpy as np # 定义sigmoid函数 def sigmoid(x): return 1 / (1 + np.exp(-x)) # 定义交叉熵损失函数 def cross_entropy_loss(y_true, y_pred): epsilon = 1e-7 # 避免log(0)的情况 return -np.mean(y_true * np.log(y_pred + epsilon) + (1 - y_true) * np.log(1 - y_pred + epsilon)) # 定义模型类 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True): self.lr = lr # 学习率 self.num_iter = num_iter # 迭代次数 self.fit_intercept = fit_intercept # 是否拟合截距 self.theta = None # 模型参数 def fit(self, X, y): if self.fit_intercept: X = np.hstack([np.ones((X.shape[0], 1)), X]) # 添加一列全为1的特征,用于拟合截距 self.theta = np.zeros(X.shape[1]) # 初始化模型参数为0 for i in range(self.num_iter): z = np.dot(X, self.theta) # 计算z值 h = sigmoid(z) # 计算预测概率 gradient = np.dot(X.T, (h - y)) / y.size # 计算梯度 self.theta -= self.lr * gradient # 更新模型参数 def predict_proba(self, X): if self.fit_intercept: X = np.hstack([np.ones((X.shape[0], 1)), X]) # 添加一列全为1的特征,用于拟合截距 return sigmoid(np.dot(X, self.theta)) # 计算预测概率 def predict(self, X, threshold=0.5): return (self.predict_proba(X) >= threshold).astype(int) # 根据阈值将概率转换为类别 # 使用sklearn生成二分类数据集 from sklearn.datasets import make_classification X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=42) # 划分训练集和测试集 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 model = LogisticRegression(lr=0.1, num_iter=10000) model.fit(X_train, y_train) # 在测试集上评估模型 y_pred = model.predict(X_test) print("Accuracy:", np.mean(y_pred == y_test)) print("Cross-entropy loss:", cross_entropy_loss(y_test, model.predict_proba(X_test))) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值