一、什么是LTV
LTV(lifetime value),即用户生命周期价值,LTV代表了用户完整生命周期内给企业创造的价值总额。LTV越高,App流量变现的价值越高,常用于衡量App广告变现收益能力。所以,LTV值是流量变现过程中的一个重要指标。
二、LTV的作用
从当前市场状况看,LTV这项指标更多的用于游戏行业,主要是衡量获客(买量)和变现(卖量)之间的关系。而对于绝大多数开发者而言,了解自身App的 LTV值也同样对流量变现起到重要作用。它可以更好的评估App用户价值,计算回报周期、验证盈利模式,从而在App用户获取和商业化变现上采取更多更优策略,获得更高收益。
这里面有两方面的应用:
一是在买量方面,计算各个渠道导入用户的LTV、CPX(CPM、CPC、CPD、CPA等)、ROI数据,从而筛选优质渠道优化投放,不断提升边际效益数据。
二是在卖量方面,计算各个变现渠道和各种变现策略下获得的收益,看不同渠道和策略下LTV值的表现,从而为流量变现策略提供优化基础。这里我们主要从卖量,也就是变现这个方面来讲。
三、LTV如何计算
在讲LTV计算前,我们需要了解另一个指标——ARPU值。ARPU(Average Revenue Per User),即平均每用户收入。它的计算公式比较好理解,就是ARPU 值=总收入 / 活跃用户数,那么LTV实际上是以用户生命周期为单位的ARPU值。
LTV的计算公式简单来说就是——新增用户在留存期内的总收益/新增用户数,而LTV是一个带时间概念的值,所以,在计算的时候一般都有指定的天数或周期,它的计算公式就是:
LTVn =当日新增用户往后n天的总收益 / 当日新增用户数
四、LTV的影响因素
(1)广告渗透率
广告渗透率即广告展示的用户数占活跃用户总数的比。渗透率越高,说明广告覆盖到的用户量越广,广告曝光量越高,越有助于App提升收益,这点对于IAA类型的开发者变现来说更为重要。
(2)人均广告展示频次
人均广告展示频次即平均每个用户看到广告的次数,即广告展示次数/活跃用户数。人均广告展示频次对LTV的影响作用,不是简单的线性增多或减少,不是人均展示次数越多,LTV就会越高,这其中存在一个临界值。例如,某用户广告展示为3次转化为1次,广告展示6次转化2次,广告展示10次转化3次,广告展示20次转化3次,人均广告展示频次虽然不是线性增长关系,但对LTV却有重要影响。
(3)eCPM
eCPM在之前的eCPM影响因素一文中已经说明,eCPM(effective cost per mille)指的是每一千次展示可以获得的广告收入,是衡量广告变现效果的重要指标。eCPM越高,表明变现收益越高,LTV就越高。
(4)用户留存率
LTV与留存率有着密切关系,这点从公式上就可以看出,用户生命周期即用户留存在App的时间。用户留存时间越长,留存用户数越多,越能创造更多的广告收益,留存率越高,LTV也会越高。
五、如何提升LTV
1. 提升广告渗透率
开发者可以对活跃用户进行频率更高、次数更多的广告展示策略,从而提升广告的渗透率,但需要控制的是广告与用户的对标性以及后续广告行为的转化,否则会造成频次过高,反而降低eCPM价格,造成收入减少。
2. 提升eCPM
eCPM越高,LTV就越高,开发者需要针对eCPM去做相应优化,从而提升LTV,具体方法请参考前文《影响eCPM的因素》。
3. 保证稳定的新增用户
用户留存一般随时间推移减少,如果没有新增用户的不断进入,LTV值的逐步递减是必然,所以保证稳定的新增用户是保证LTV稳定的一项重要工作,目前多数开发者都会通过投放买量来维持新增用户的稳定。
4. 提升用户留存率
LTV最直接的影响因素是留存率,留存用户越多、留存时间越长、留存用户活跃度越高,创造的收益越多。影响留存率的因素,总结下来,主要有买入的用户质量和APP本身的质量两个方面。
买入的用户质量高低,直接影响用户留存。如果用户质量明显较低,留存基本无法保证,LTV也就无法保证,这里主要要进行买量渠道的控制,高质量的买量渠道才能带来高质量的用户,留存才能高。
另一个重要的方面是App本身的质量。App用户体验越高,用户留存越高,LTV才会高。如果用户体验不好,新增用户也是很难留下来。
LTV这一指标与ARPDAU以及留存率关系密切,在App变现过程中作为重要的KPI数据,对App产品的长期成功非常重要。开发者通过主动追踪LTV,可以帮助我们更加正确的选择货币化技术决定。
六、AdScope LTV报表功能,深挖App流量变现价值,助力广告收益提升
AdScope针对这一需求,推出LTV报表功能,将变现收入与新增用户结合,直接为开发者提供LTV数据报告,方便开发者了解LTV情况,及时做出优化策略。
AdScopeLTV报表,具备多种运营分析功能:
(一)查看某日LTV
根据AdScope平台内获取到的新增用户数据,与媒体变现收入直接计算LTV值,省去开发者多种数据追踪监测及制表的麻烦。
LTV(n)= 选定日期的新增用户在N天的总收益/选定日期新增用户数量
(二)查看某日留存率
根据AdScope平台获取到的媒体活跃用户与新增用户情况,统计用户在安装应用N天后的留存情况,即用户安装应用在N天后仍有打开应用的比例。
(三)预估LTV
可根据已知LTV值及留存情况,预估指定天数内的LTV值,支持预估3天、5天、15天、30天的LTV,帮助开发者深度分析产品商业化变现价值。
(四)区分用户来源
可区分不同买量渠道带来的LTV值,帮助开发者判断买量渠道质量,以便及时做出买量策略调整。