目录
1.4 Multi-Branch Deep Learning Framework for Land Scene Classification in Satellite Imagery2023
1.5 Enabling country-scale land cover mapping with meter-resolution satellite imagery2023
2.3 Adversarial Remote Sensing Scene Classification Based on Lie Group Feature Learning2023
3.2 A deep relearning method based on the recurrent neural network for land cover classification2022
3.3 Multiscale spectral-spatial feature learning for hyperspectral image classification2022
4.1 Masked Auto-Encoding Spectral–Spatial Transformer for Hyperspectral Image Classification2022
1. CNN-Based
1.1 Interpretable Deep Learning Framework for Land Use and Land Cover Classification in Remote Sensing Using SHAP
2023
本文介绍了一种使用 Shapley 加性解释 (SHAP) 进行遥感土地利用和土地覆盖 (LULC) 分类的可解释深度学习框架。它利用紧凑的卷积神经网络 (CNN) 模型对卫星图像进行分类,然后将结果输入到 SHAP 深度解释器以强化分类结果。所提出的框架应用于包含 27000 张像素大小为 64×64 的图像的 Sentinel-2 卫星图像,并对三波段组合进行操作,考虑到有 13 个可用通道,将模型的输入数据减少了 77%,同时研究了不同光谱带如何影响对数据集类别的预测。在 EuroSAT 数据集上的实验结果表明 CNN 的分类准确,总体准确率为 94.72%,而与具有大量可训练参数的标准方法相比,该框架对数据集每个类别的三波段组合的分类准确率均有提高。所提框架的 SHAP 可解释结果通过显示与预测类别相关的相关值来保护网络的预测,从而改善同一场景中不同土地用途的城市和农村地区的分类。
1.2 Application of a Novel Multiscale Global Graph Convolutional Neural Network to Improve the Accuracy of Forest Type Classification Using Aerial Photographs
2023
准确分类森林类型对于可持续森林管理至关重要。在本研究中,使用来自日本中部东京大学千叶森林的超高分辨率航拍照片,将一种新型多尺度全局图卷积神经网络 (MSG-GCN) 与随机森林 (RF)、U-Net 和 U-Net++ 模型在天然混合林 (NMX)、天然阔叶林 (NBL) 和针叶林人工林 (CP) 的分类方面进行了比较。我们的 MSG-GCN 架构在以下方面具有新颖性:编码器的卷积核尺度与其他模型不同;局部注意力取代了传统的 U-Net++ 跳过连接;多尺度图卷积神经块嵌入到编码器模块的末端层;并且拼接各种解码层以保留高级和低级特征信息并提高边界单元的决策能力。MSG-GCN 实现了比其他最先进 (SOTA) 方法更高的分类准确率。与 NBL 和 CP 相比,NMX 的分类准确率较低。 RF方法产生严重的椒盐噪声,U-Net和U-Net++方法频繁产生错误斑块,不同森林类型之间的边缘粗糙模糊。相比之下,MSG-GCN方法错误分类的斑块较少,不同森林类型之间的边缘清晰。MSG-GCN错误分类的大部分区域位于边缘,而U-Net和U-Net++错误分类的斑块随机分布在内部区域。我们充分利用人工智能和超高分辨率遥感数据来创建精确的地图以辅助森林管理,并促进日本高效准确地进行森林资源清查。
1.3 Urban Feature Extraction within a Complex Urban Area with an Improved 3D-CNN Using Airborne Hyperspectral Data
2023
机载高光谱数据具有丰富的光谱空间信息,但如何有效挖掘和利用这些信息仍然是一个巨大的挑战。最近,三维卷积神经网络(3D-CNN)为高光谱分类提供了一种新的有效方法。但其在复杂城市区域,特别是在云阴影区域的数据挖掘能力尚未得到验证。因此,提出了一种3D-1D-CNN模型,用于受云阴影影响的复杂城市高光谱图像的特征提取。首先,从高光谱数据中提取光谱组成参数、植被指数和纹理特征。其次,将这些参数融合并分割成许多S×S×B斑块,将其输入到3D-CNN分类器中,以提取复杂城市地区的特征。第三,还进行了支持向量机(SVM)、随机森林(RF)、1D-CNN、3D-CNN和3D-2D-CNN分类器以进行比较。最后,计算混淆矩阵和Kappa系数以进行精度评估。提出的3D-1D-CNN整体准确率为96.32%,比SVM、RF、1D-CNN和3D-CNN分别高出23.96%、11.02%、5.22%和0.42%。结果表明,3D-1D-CNN可以有效地从高光谱数据中挖掘空间光谱信息,尤其是云阴影区草地和高速公路等光谱信息缺失的区域。未来3D-1D-CNN也可以用于城市绿地的提取。
1.4 Multi-Branch Deep Learning Framework for Land Scene Classification in Satellite Imagery
2023
卫星图像中的陆地场景分类在远程监控、环境监测、远程场景分析、地球观测和城市规划中有着广泛的应用。由于陆地场景分类任务的巨大优势,近年来提出了几种自动对遥感图像中的陆地场景进行分类的方法。大部分工作集中在设计和开发深度网络以从高分辨率卫星图像中识别陆地场景。然而,这些方法在识别不同的陆地场景时面临挑战。复杂的纹理、杂乱的背景、极小的物体尺寸和物体尺度的大变化是限制模型实现高性能的常见挑战。为了应对这些挑战,我们提出了一个多分支深度学习框架,该框架有效地将全局上下文特征与多尺度特征结合起来以识别复杂的陆地场景。一般来说,该框架由两个分支组成。第一个分支从输入图像的不同区域提取全局上下文信息,第二个分支利用完全卷积网络 (FCN) 提取多尺度局部特征。在三个基准数据集 UC-Merced、SIRI-WHU 和 EuroSAT 上评估了所提框架的性能。通过实验,我们证明该框架与其他类似模型相比具有更优异的性能。
1.5 Enabling country-scale land cover mapping with meter-resolution satellite imagery
2023
高分辨率卫星图像可以为土地覆盖分类提供丰富、详细的空间信息,这对于研究复杂的建筑环境尤为重要。然而,由于土地覆盖模式复杂、训练样本收集成本高、卫星图像分布变化严重(例如由于地理差异或获取条件导致),很少有研究将高分辨率图像应用于大尺度详细类别的土地覆盖制图。为了填补这一空白,我们提出了一个大规模土地覆盖数据集,即“五十亿像素”。它包含 150 张高分辨率 Gaofen-2(4 米)卫星图像的 50 多亿个标记像素,并按 24 个类别系统进行注释,涵盖人工建造、农业和自然类别。此外,我们提出了一种基于深度学习的无监督域自适应方法,可以将在标记数据集(称为源域)上训练的分类模型转移到未标记数据(称为目标域)以进行大规模土地覆盖制图。具体来说,我们引入了一种端到端暹罗网络,该网络采用动态伪标签分配和类平衡策略来执行自适应域联合学习。为了验证我们的数据集和所提出的方法在不同传感器和不同地理区域的通用性,我们分别使用 PlanetScope(3 米)、高分一号(8 米)和 Sentinel-2(10 米)卫星图像对中国五大城市和其他五个亚洲国家的六个城市进行了土地覆盖制图。在总研究面积为 60,000 平方公里的区域内,即使输入图像完全未标记,实验也显示出令人鼓舞的结果。使用五十亿像素数据集进行训练的所提出方法能够以米级分辨率对中国全国和其他一些亚洲国家进行高质量和详细的土地覆盖制图。