%matplotlib inline
import random#生成随机数模块
import torch
from d2l import torch as d2l
生成数据集
我们根据带有噪声的线性模型构造一个人造数据集,根据有限的样本的数据集来恢复这个模型的参数。
其中可以视为模型预测和标签时的潜在观测误差。 在这里我们认为标准假设成立,即服从均值为0的正态分布。 为了简化问题,我们将标准差设为0.01。 下面的代码生成合成数据集。
生成一个包含1000个样本的数据集:
def synthetic_data(w, b, num_examples): #@save
#w是权重向量,b是偏置,num_examples是要生成的数据样本数
"""生成y=Xw+b+噪声"""
X = torch.normal(0, 1, (num_examples, len(w)))
#生成一个服从正态分布(均值为0,标准差为1)的随机矩阵X,
#形状为(num_examples, len(w)),其中len(w)表示特征的数量
y = torch.matmul(X, w) + b
#matmul()将X与权重向量w相乘,然后加上偏置b,得到原始的输出值。
y += torch.normal(0, 0.01, y.shape)
#这一行为输出y添加了一些噪声,噪声服从均值为0,标准差为0.01的正态分布。
return X, y.reshape((-1, 1))
#输出向量y通过.reshape((-1, 1))将其形状调整为(num_examples, 1),使其变成一个列向量。
#其中-1表示根据其他维度的大小自动推断该维度的大小。
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
#后文中不要弄混了,features是x,labels是y
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);
以上是一个绘图 操作,可以通过别的库如matplotlib来实现
读取数据集
训练模型时要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新我们的模型。 由于这个过程是训练机器学习算法的基础,所以有必要定义一个函数, 该函数能打乱数据集中的样本并以小批量方式获取数据。
def data_iter(batch_size, features, labels):
#batch_size表示每个批次的样本数量,features是特征数据,labels是对应的标签数据
num_examples = len(features)
#计算了特征数据的总样本数量
indices = list(range(num_examples))
#创建了一个索引列表,其中包含了所有样本的索引号
# 这些样本是随机读取的,没有特定的顺序
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
#以batch_size为步长,生成了[num_examples/batch_size]个批量
batch_indices = torch.tensor(#获取索引
indices[i: min(i + batch_size, num_examples)])#确保了不会超出数据集的索引范围
yield features[batch_indices], labels[batch_indices]#返回小批量
list(range(num_examples))
`list` 是 Python 内置的一个数据类型,用于存储一系列的元素。在这个上下文中,我们使用 `list` 函数来将一个可迭代对象转换为列表。
在给定的代码中,`list` 函数没有被直接调用,但它被用于创建一个列表来存储样本的索引。具体来说,在 `indices = list(range(num_examples))` 这一行代码中,`range(num_examples)` 返回了一个包含从 0 到 `num_examples - 1` 的整数的可迭代对象,然后 `list` 函数将这个可迭代对象转换为了一个列表,即 `indices`。这个列表存储了样本的索引,后面会用到它来对样本进行随机的打乱和批次的选择。
random.shuffle(indices)
`shuffle` 是一个用于打乱列表元素顺序的函数,通常用于随机化数据的顺序。在 Python 中,`shuffle` 函数通常在 `random` 模块中,因此在使用之前需要先导入该模块。`shuffle` 函数接受一个可变的序列(例如列表)作为参数,并将该序列的元素随机打乱。
在给定的代码中,`shuffle` 函数被用于打乱存储样本索引的列表,以实现每次迭代时对样本的随机读取。具体来说,在 `random.shuffle(indices)` 这一行代码中,`indices` 列表中存储了样本的索引,调用 `shuffle` 函数将这些索引随机打乱,从而使得每次迭代时的样本顺序都是随机的。这样可以确保在训练过程中每个批次的样本都是随机抽取的,有助于提高模型的训练效果。
yeild
yield的作用就是在每一步执行到这个位置的时候都返回两个值,这样就会分步的返回features和labels。
batch_size = 10
for X, y in data_iter(batch_size, features, labels):
print(X, '\n', y)
break
如果要访问其他批量可以对break那一行进行修改,加一个计数器,达到某个条件之后break。
初始化模型参数
在我们开始用小批量随机梯度下降优化我们的模型参数之前, 我们需要先有一些参数。 在下面的代码中,我们通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重, 并将偏置初始化为0。
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
#w为两个随机的符号正态分布的数(不一定非得是正态分布)
b = torch.zeros(1, requires_grad=True)
#b为0
定义模型
def linreg(X, w, b): #@save
"""线性回归模型"""
return torch.matmul(X, w) + b
定义损失函数
def squared_loss(y_hat, y): #@save
"""均方损失"""
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
定义优化算法
def sgd(params, lr, batch_size): #@save
"""小批量随机梯度下降"""
with torch.no_grad():#上下文管理器
for param in params:
param -= lr * param.grad / batch_size#参数更新
param.grad.zero_()
优化算法的目的是最小化损失函数
params
表示模型参数,lr
表示学习率,batch_size
表示批次大小。其通过更新模型参数params来使得损失的值最小。
torch.no_grad()
当在训练神经网络时,通常需要计算模型参数相对于损失函数的梯度,并利用这些梯度来更新参数以最小化损失。PyTorch 默认情况下会自动跟踪所有操作的梯度信息,这个功能是由 autograd 模块提供的。
然而,在某些情况下,你可能想要手动更新参数,例如在实现自定义的优化算法时,或者在进行参数更新时需要更多的控制。在这种情况下,你可以使用 `torch.no_grad()` 上下文管理器,以告诉 PyTorch 不要跟踪 `with` 块内部的操作的梯度。这样做的原因有几个:
1. 节省内存和计算资源:在训练期间,计算图会记录所有操作,以便在反向传播过程中计算梯度。但是,如果你手动更新参数,并且不需要跟踪这些更新操作的梯度,使用 `torch.no_grad()` 可以避免计算图的构建,从而节省内存和计算资源。
2. 避免梯度累积:在训练过程中,如果不清零参数的梯度,梯度会在每个迭代中累积。使用 `torch.no_grad()` 上下文管理器确保在更新参数之前清零梯度,以避免这种累积效应。
3. 避免不必要的计算:如果你不打算利用某些操作的梯度信息,将其包含在计算图中是不必要的。通过在这些操作周围使用 `torch.no_grad()`,可以避免这些不必要的计算。
因此,使用 `torch.no_grad()` 上下文管理器是一种有效的方式,用于控制梯度的跟踪和计算图的构建,特别是在需要手动管理参数更新时。
param -= lr * param.grad / batch_size
这行代码会根据学习率lr参数的梯度param.grad以及批次的大小来更新param,其会沿着梯度的反方向移动一小步,以降低损失函数。
训练
在每次迭代中,我们执行:
1.读取小批量训练样本,并通过我们的模型来获得一组预测。
2.计算损失函数
3.反向传播
4.调用优化算法来更新模型参数
lr = 0.03#学习率
num_epochs = 3#迭代周期个数
net = linreg#将函数linreg赋给net
loss = squared_loss#将函数squared_loss赋给loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y) # X和y的小批量损失
# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
# 并以此计算关于[w,b]的梯度
l.sum().backward()
sgd([w, b], lr, batch_size) # 使用参数的梯度更新参数
with torch.no_grad():
train_l = loss(net(features, w, b), labels)#计算迭代周期之后的损失
print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')#打印出来
for X, y in data_iter(batch_size, features, labels)
这是一个内部循环,用于遍历整个数据集,并以小批量的形式获取特征 X
和标签 y
因为我们使用的是自己合成的数据集,所以我们知道真正的参数是什么。 因此,我们可以通过[比较真实参数和通过训练学到的参数来评估训练的成功程度]。 事实上,真实参数和通过训练学到的参数确实非常接近。
[Output]:
w的估计误差: tensor([-0.0002, -0.0002], grad_fn=<SubBackward0>) b的估计误差: tensor([4.4346e-05], grad_fn=<RsubBackward1>)
grad_fn提供了关于这个张量是如何计算而来的信息,以及它在计算图中的位置。
grad_fn=<SubBackward0>
表示这个张量是通过一个减法操作(Subtraction)得到的,0
表示这是一个普通的张量,而不是一个保存梯度的张量。这是因为它是一个计算图的叶节点,没有任何后续操作需要它的梯度。
grad_fn=<RsubBackward1>
是PyTorch张量对象的一部分,用于追踪张量的计算历史。在这个特定的情况下,grad_fn=<RsubBackward1>
表示这个张量是通过反向减法操作(Reverse Subtraction)得到的,并且它是计算图中的一个叶节点(leaf node)
小结
- 我们学习了深度网络是如何实现和优化的。在这一过程中只使用张量和自动微分,不需要定义层或复杂的优化器。
- 这一节只触及到了表面知识。在下面的部分中,我们将基于刚刚介绍的概念描述其他模型,并学习如何更简洁地实现其他模型。