机器学习(七) | 线性回归的从零开始实现(linear-regression-scratch)

%matplotlib inline
import random#生成随机数模块
import torch
from d2l import torch as d2l

生成数据集

我们根据带有噪声的线性模型构造一个人造数据集,根据有限的样本的数据集来恢复这个模型的参数。

\mathbf{y}=\boldsymbol{Xw}+b+\epsilon

其中\epsilon可以视为模型预测和标签时的潜在观测误差。 在这里我们认为标准假设成立,即\epsilon服从均值为0的正态分布。 为了简化问题,我们将标准差设为0.01。 下面的代码生成合成数据集。

生成一个包含1000个样本的数据集:

def synthetic_data(w, b, num_examples):  #@save
#w是权重向量,b是偏置,num_examples是要生成的数据样本数
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
#生成一个服从正态分布(均值为0,标准差为1)的随机矩阵X,
#形状为(num_examples, len(w)),其中len(w)表示特征的数量
    y = torch.matmul(X, w) + b
#matmul()将X与权重向量w相乘,然后加上偏置b,得到原始的输出值。
    y += torch.normal(0, 0.01, y.shape)
#这一行为输出y添加了一些噪声,噪声服从均值为0,标准差为0.01的正态分布。
    return X, y.reshape((-1, 1))
#输出向量y通过.reshape((-1, 1))将其形状调整为(num_examples, 1),使其变成一个列向量。
#其中-1表示根据其他维度的大小自动推断该维度的大小。
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
#后文中不要弄混了,features是x,labels是y
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);

以上是一个绘图 操作,可以通过别的库如matplotlib来实现

读取数据集

训练模型时要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新我们的模型。 由于这个过程是训练机器学习算法的基础,所以有必要定义一个函数, 该函数能打乱数据集中的样本并以小批量方式获取数据。

def data_iter(batch_size, features, labels):
#batch_size表示每个批次的样本数量,features是特征数据,labels是对应的标签数据
    num_examples = len(features)
    #计算了特征数据的总样本数量
    indices = list(range(num_examples))
    #创建了一个索引列表,其中包含了所有样本的索引号
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
    #以batch_size为步长,生成了[num_examples/batch_size]个批量
        batch_indices = torch.tensor(#获取索引
            indices[i: min(i + batch_size, num_examples)])#确保了不会超出数据集的索引范围
        yield features[batch_indices], labels[batch_indices]#返回小批量
list(range(num_examples))

`list` 是 Python 内置的一个数据类型,用于存储一系列的元素。在这个上下文中,我们使用 `list` 函数来将一个可迭代对象转换为列表。

在给定的代码中,`list` 函数没有被直接调用,但它被用于创建一个列表来存储样本的索引。具体来说,在 `indices = list(range(num_examples))` 这一行代码中,`range(num_examples)` 返回了一个包含从 0 到 `num_examples - 1` 的整数的可迭代对象,然后 `list` 函数将这个可迭代对象转换为了一个列表,即 `indices`。这个列表存储了样本的索引,后面会用到它来对样本进行随机的打乱和批次的选择。

 random.shuffle(indices)

`shuffle` 是一个用于打乱列表元素顺序的函数,通常用于随机化数据的顺序。在 Python 中,`shuffle` 函数通常在 `random` 模块中,因此在使用之前需要先导入该模块。`shuffle` 函数接受一个可变的序列(例如列表)作为参数,并将该序列的元素随机打乱。

在给定的代码中,`shuffle` 函数被用于打乱存储样本索引的列表,以实现每次迭代时对样本的随机读取。具体来说,在 `random.shuffle(indices)` 这一行代码中,`indices` 列表中存储了样本的索引,调用 `shuffle` 函数将这些索引随机打乱,从而使得每次迭代时的样本顺序都是随机的。这样可以确保在训练过程中每个批次的样本都是随机抽取的,有助于提高模型的训练效果。

yeild

yield的作用就是在每一步执行到这个位置的时候都返回两个值,这样就会分步的返回features和labels。

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    break

如果要访问其他批量可以对break那一行进行修改,加一个计数器,达到某个条件之后break。

初始化模型参数

在我们开始用小批量随机梯度下降优化我们的模型参数之前我们需要先有一些参数。 在下面的代码中,我们通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重, 并将偏置初始化为0。

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
#w为两个随机的符号正态分布的数(不一定非得是正态分布)
b = torch.zeros(1, requires_grad=True)
#b为0

定义模型

def linreg(X, w, b):  #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b

定义损失函数

def squared_loss(y_hat, y):  #@save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

定义优化算法

def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():#上下文管理器
        for param in params:
            param -= lr * param.grad / batch_size#参数更新
            param.grad.zero_()

优化算法的目的是最小化损失函数

params表示模型参数,lr表示学习率,batch_size表示批次大小。其通过更新模型参数params来使得损失的值最小。

torch.no_grad()

当在训练神经网络时,通常需要计算模型参数相对于损失函数的梯度,并利用这些梯度来更新参数以最小化损失。PyTorch 默认情况下会自动跟踪所有操作的梯度信息,这个功能是由 autograd 模块提供的。

然而,在某些情况下,你可能想要手动更新参数,例如在实现自定义的优化算法时,或者在进行参数更新时需要更多的控制。在这种情况下,你可以使用 `torch.no_grad()` 上下文管理器,以告诉 PyTorch 不要跟踪 `with` 块内部的操作的梯度。这样做的原因有几个:

1. 节省内存和计算资源:在训练期间,计算图会记录所有操作,以便在反向传播过程中计算梯度。但是,如果你手动更新参数,并且不需要跟踪这些更新操作的梯度,使用 `torch.no_grad()` 可以避免计算图的构建,从而节省内存和计算资源。

2. 避免梯度累积:在训练过程中,如果不清零参数的梯度,梯度会在每个迭代中累积。使用 `torch.no_grad()` 上下文管理器确保在更新参数之前清零梯度,以避免这种累积效应。

3. 避免不必要的计算:如果你不打算利用某些操作的梯度信息,将其包含在计算图中是不必要的。通过在这些操作周围使用 `torch.no_grad()`,可以避免这些不必要的计算。

因此,使用 `torch.no_grad()` 上下文管理器是一种有效的方式,用于控制梯度的跟踪和计算图的构建,特别是在需要手动管理参数更新时。

param -= lr * param.grad / batch_size

这行代码会根据学习率lr参数的梯度param.grad以及批次的大小来更新param,其会沿着梯度的反方向移动一小步,以降低损失函数。

训练

在每次迭代中,我们执行:

1.读取小批量训练样本,并通过我们的模型来获得一组预测。

2.计算损失函数

3.反向传播

4.调用优化算法来更新模型参数

lr = 0.03#学习率
num_epochs = 3#迭代周期个数
net = linreg#将函数linreg赋给net
loss = squared_loss#将函数squared_loss赋给loss
for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)#计算迭代周期之后的损失
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')#打印出来

for X, y in data_iter(batch_size, features, labels) 这是一个内部循环,用于遍历整个数据集,并以小批量的形式获取特征 X 和标签 y

因为我们使用的是自己合成的数据集,所以我们知道真正的参数是什么。 因此,我们可以通过[比较真实参数和通过训练学到的参数来评估训练的成功程度]。 事实上,真实参数和通过训练学到的参数确实非常接近。

[Output]:

w的估计误差: tensor([-0.0002, -0.0002], grad_fn=<SubBackward0>)
b的估计误差: tensor([4.4346e-05], grad_fn=<RsubBackward1>)

grad_fn提供了关于这个张量是如何计算而来的信息,以及它在计算图中的位置。

grad_fn=<SubBackward0> 表示这个张量是通过一个减法操作(Subtraction)得到的,0 表示这是一个普通的张量,而不是一个保存梯度的张量。这是因为它是一个计算图的叶节点,没有任何后续操作需要它的梯度。

grad_fn=<RsubBackward1> 是PyTorch张量对象的一部分,用于追踪张量的计算历史。在这个特定的情况下,grad_fn=<RsubBackward1> 表示这个张量是通过反向减法操作(Reverse Subtraction)得到的,并且它是计算图中的一个叶节点(leaf node)

小结

  • 我们学习了深度网络是如何实现和优化的。在这一过程中只使用张量和自动微分,不需要定义层或复杂的优化器。
  • 这一节只触及到了表面知识。在下面的部分中,我们将基于刚刚介绍的概念描述其他模型,并学习如何更简洁地实现其他模型。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值