LCL滤波器电容阻尼选择

LCL滤波器的传递函数:

没有加入阻尼时,系统的开环极点位于S平面的虚轴上,系统处于临界稳定状态,稍有波动就会使得系统变成不稳定状态;加入阻尼电阻RC后,系统的极点移向s平面的左边,系统处于稳定状态RC通常取一个谐振频率下与电容阻抗的二分之一。

 

 此处取Rc=5Ω

首先忽略Rc ,LCL滤波器传递函数波特图为:  

 

 取Rc=5Ω

 

 在高频段,由于电容的容抗很小,串联电阻会增大电容支路的阻抗,从而LCL滤波器的高频谐波衰减能力有所削弱;在低频段,由于电容的容抗远大于串联电阻的阻值,串联电阻可以忽略,因此对LCL滤波器的低频段增益几乎没有影响。无源阻尼法简单可靠,能够很好抑制谐振尖峰,且不需要改变原系统的控制结构,减少控制难度,因此在工业界得到了广泛的应用。

int main()
{
    double  x, y, a;
    for (y = 1.5; y > -1.5; y -= 0.1)
    {
        for (x = -1.5; x < 1.5; x += 0.05)
        {
            a = x * x + y * y - 1;
            char ch = a * a * a - x * x * y * y*y <= 0.0 ? '*' : ' ';
            putchar(ch);
        }
        system("color 0c");   //修改颜色
        printf("\n");
    }
    printf("感谢");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学习不好的电气仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值