离散数学(2)第一章 基本概念

1.1图的概念

1.【定义】:二元组(V(G),E(G))

2.【定义】: d(v)=d+(v)+d-(v)

d+(v):正度 以v为始点的边数

d-(v):负度 以v为终点的边数

3.【定义】简单图:无自环 无重边 无向图

4.【定义】完全图:任何两点间都有边的简单图(每个点的度数都为n-1)

5.【性质】(无向图)各点度数之和为边数2倍

\sumd(v)=2m

6.【性质】(无向图)G中度为奇数的节点必为偶数个

证明思路:(反证法)若度为奇数的节点数为奇数个,则G中各点度数之和为奇数,与5矛盾。

7.【性质】(有向图)G中正度之和等于负度之和

8.【性质】(无向图)完全图边数为n(n-1)/2

9.【性质】(简单图)非空简单图中一定存在度相同的节点

证明思路:(鸽笼原理)case 1:若不存在孤立节点,一共n个节点,每个节点度的取值范围是1~(n-1);case 2:若存在K个孤立节点,其余n-K个节点,每个节点度取值为1~(n-K-1)

10.【定义】赋权图 正权图

11.【定义】子图:取出一部分点和一部分边  V'\subseteqV,E'\subseteqE

支撑子图/生成子图:取出全部点和部分变V'=V

导出子图:取出部分点,但E'包含了G在V'之间的所有边

平凡子图:G本身和空图

12.【定义】图的交:点集和边集都取∩

图的并:点集和边集都取∪

图的对称差:点集取∪,边集取对称差

13.【定义】\Gamma+(v):v的直接后继集或外邻集

\Gamma-(v):v的直接前驱集或內邻集

14.【定义】图的同构:G1=(V1,E1),G2=(V2,E2),G1和G2同构<=>V1和V2之间存在双射f,(u,v)\inE1当且仅当(f(u),f(v))\inG2,记作G1≌G2

【判定】同构的必要条件:

(1)点数和边数均相等

(2)G1 G2节点度的非增序列相同

(3)存在同构的导出子图(常用于判断两个图不同构)

1.2图的代数表示

1.邻接矩阵/权矩阵(无向图)(可以表示自环 不能表示重边)

2.关联矩阵(有向图)每列表示一条边,始点为1,终点为-1,(可以表示重边 不能表示自环)

3.边列表 

对关联矩阵的边进行压缩,竖着看,仍然是每列表示一条边。A(k)存放第k条边的始点,B(k)存放第K条边的终点

4.正向表

注此处的数组下标从1开始,而非从0开始

有向图:对邻接矩阵的行进行压缩,将所有节点的直接后继依次存放在一起(依次指的是先存放1号节点的后继,在存放2号节点的后继,以此类推,直到n号节点的后继),构成数组B[m],但是只凭借B[m]我们只知道每条边的后继,不知道前驱,因此再构建数组A[n],A[i]表示节点i的第一个直接后继在B[m]中出现的位置。比如A={1,2,5,5,8},B={2,2,3,4,3,1,1},A[2]=2,A[3]=5,因此B[2],B[3],B[4]都是2号节点的后继,代表的边依次为(2,2)(2,3)(2,4)。此外,还可以添加叔祖Z[m],表示每条边的权重。

无向图:无向图的正向表需要将B的长度由m扩充为2m,原因如下:若1,2节点之间存在一条边,那么第一次需要添加(1,2),第二次需要添加(2,1),故每条边需要添加两次。

5.逆向表

思路与正向表相同,只不过B[m]中存放的是每条边的直接前驱。比如A=[1,3,5,7,8],B=[4,4,1,2,2,4,2],A[2]=3,A[3]=5,那么夹在B[3]和B[5]之间(左闭右开)的就是2号点的直接前驱,边为(1,2)(2,2)

6.邻接表(过于常见不再赘述)

(本文为期末复习,内容选自教材《图论与代数结构》戴一奇等编著,结合了作者本人的一些理解,若有错误,请指出!)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值