1.线性空间的知识点
封闭性:加法和数乘的概念
8条规则:加法运算和数乘运算
2.基底
3.子空间
定义:w为v的子空间,也满足在数域P上的线性运算(8大运算),L(a1,a2,…)为子空间的定义形式
生成子空间:α1…m 不一定线性无关,也不一定线性相关
交子空间:也是V的子空间
和子空间:将两个子空间写成生成子空间的形式
4.维数定理
V1和V2的维度=二者交子空间的维度+和子空间的维度
5.例题(如何求基和求维数)
**求基底:**求V1+V2的基=L(V1,V2)这一子空间,然后对L(V1,V2)进行线性变换,求其极大无关组
**求维数:**极大无关组的元素个数就是维数
**极大无关组的个数:**等于秩的大小,此题的秩为3,所以极大无关组的元素个数为3——>有很多个极大无关组(a1,a2,p1)/(a1,a3,p1)/…
6.证明线性变换
线性变换的证明,只需要证明 T(a+p) = Ta+Tp 和 T(ka) = kTa 即可证明 T 是 V 上的线性变换
7.证明线性变换例题
在给定条件 TA = CA - AC 情况下,证明 T 是线性变换——>可以利用线性变换两个证明方式进行证明,其一是 T(a+p) = Ta +Tp,其二为 T(ka) = kTa 【一般是正反结合起来证明,利用题目给定条件和T(A+B)、T(KA)、 TA+TB、kTA】
8.像子空间和核子空间
像子空间:a 通过线性变换 T 得到的 Ta ,Ta 是像子空间的一部分。
核子空间:a 通过线性变换 T 作用为 0,0 是核子空间的一部分。
第二个维数定理:
像子空间的维度+核子空间的维度 = n
9.线性变换的矩阵(给定基底、线性变换T,求得线性变换T在基底下的矩阵)
在基底下,线性变换可以用矩阵A表达
考点: 同一线性变换在不同基底下的矩阵
10.例题:求线性变换T在某基底下的矩阵
求逆矩阵:
将A矩阵转换为单位矩阵,那么单位矩阵变换的矩阵就是A逆矩阵
例子1:已知基底
例子2:未知基底
一般未知基底的,都存在基底之间的关系表达式
比如:已知 b 和 a 之间的关系,在构建线性变换 T 在基底 a 时求矩阵,可以转换到 b 上,即:
可以直接根据 【(b1,b2,b3,b4)= (a1,a2,a3,a4) C 】和 【b与a之间的关系】,求得 C 矩阵
B = C-1AC