基础线性代数知识点总结与回顾(四):线性空间

基础线性代数知识点总结与回顾(四):线性空间

骨骼图:
在这里插入图片描述
#其实,线性空间是向量空间内容的扩展。

首先我把向量空间的内容截图搬过来,便于你们的比较与对照。
在这里插入图片描述
线性空间

设V是实数域k上的线性空间,W是V的非空子集,如果W对V中定义的加法和数乘运算都封闭,则称W是V的子空间。
对比向量空间的子空间概念发现,n维向量空间被替换为线性空间V。

设V是线性空间,如果V中存在n个线性无关的向量,而任意n+1个向量都线性相关,则称线性空间V是n维线性空间,而这n个线性无关的向量称为线性空间V的一组
在这里插入图片描述是线性空间在这里插入图片描述的一组基,在这里插入图片描述有:在这里插入图片描述
则称,x1,x2,…,xn为向量在这里插入图片描述在基在这里插入图片描述
下的坐标

我们知道,一个秩为r的n维矩阵,它有r个线性无关的向量,但是这r个向量组的组成不唯一,但它们都称为基,这就引出来了基变换引发的坐标变换的内容。
过渡矩阵
在这里插入图片描述在这里插入图片描述
是三维线性空间的两组基。若:
在这里插入图片描述
称,C是由基在这里插入图片描述到基在这里插入图片描述的过渡矩阵。
若r在基在这里插入图片描述下的坐标为在这里插入图片描述
r在基在这里插入图片描述下的坐标为在这里插入图片描述

则X=CY:
在这里插入图片描述

线性变换
设M和N是两个非空集合,如果给定一个法则在这里插入图片描述,使得M中的每一个元素 在这里插入图片描述都有N中的一个确定元素在这里插入图片描述
与它对应,则在这里插入图片描述是集合M到N的一个映射。

在这里插入图片描述是线性空间V的一个变换,如果在这里插入图片描述对加法和数乘都封闭,则称在这里插入图片描述是线性空间V上的线性变换。

线性变换保持向量的线性组合关系不变。 也就是说,线性变换将线性相关的向量组映射成线性相关的向量组。即:如果在这里插入图片描述线性相关,则:在这里插入图片描述线性相关。

线性变换的矩阵表示:
如果:在这里插入图片描述
记:在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
为线性变换在这里插入图片描述在基在这里插入图片描述下的矩阵。

线性空间中有两组基:在这里插入图片描述在这里插入图片描述
,基在这里插入图片描述到基在这里插入图片描述的过渡矩阵为C,线性空间中线性变换在这里插入图片描述在这两组基下的矩阵依次为A和B,则在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值