【矩阵理论】0.线性空间引论(1)

一、线性空间

1.定义概念

1.向量空间:设𝑉是𝑛维实向量的非空集合,若𝑉对 向量的加法和数乘两种运算都封闭,即对于任意向量 𝛼, 𝛽 ∈ 𝑉和𝑘 ∈ ℝ, 都有𝛼 + 𝛽 ∈ 𝑉和𝑘𝛼 ∈ 𝑉则称集合𝑉为向量空间。
(注意:这里是向量空间的定义)
2.数域:设𝐹是非空数集, 若𝐹中任意两个数的和、差、积、商(除数不为0)仍在该数集, 即对四则运算封闭, 称该数集𝐹为一个数域.例如: 实数集:ℝ、数集:ℂ、有理数集ℚ;自然数集ℕ、整数集ℤ。
(注意:像集合 Q ( 2 ) = { a + b 2 ∣ a , b ∈ Q } \mathbb{Q}\left( \sqrt{2} \right)=\left\{ a+b\sqrt{2}|a,b\in \mathbb{Q} \right\} Q(2 )={ a+b2 a,bQ}也是数域)
3.加群:设𝑉是一个非空集合,若𝑉中有一种规则,称之为加法运算" + ",使得任取 𝒖, 𝒗 ∈ 𝑉,都 有𝑉中唯一的元素与之对应,称为𝒖与𝒗的和,记为𝒖 + 𝒗,且这种加法满足如下性质:
(1)交换律: 𝒖 + 𝒗 = 𝒗 + 𝒖;
(2)结合律: 𝒖 + 𝒗 + 𝝎 = 𝒖 + (𝒗 + 𝝎);
(3)存在零元 𝜽 ∈ 𝑉使得∀𝒖 ∈ 𝑉, 𝒖 + 𝜽 = 𝒖;
(4)∀𝒖 ∈ 𝑉, 存在负元−𝒖使得𝒖 + −𝒖 = 𝜽; 称𝑉在加法运算下构成一个加群,记为(𝑉, +).
4.线性空间:设(𝑉, +)是一个加群,𝐹是一个数域.若有𝐹对𝑉的数乘规则,使得∀𝜆 ∈ 𝐹, 𝒖 ∈ 𝑉,有𝑉中唯一元素与之对应,记为𝜆𝒖,且此规则满足以下性质:
(1)𝜆 𝒖 + 𝒗 = 𝜆𝒖 + 𝜆𝒗,数乘对加法分配律;
(2) 𝜆 + 𝜇 𝒖 = 𝜆𝒖 + 𝜇𝒖,数乘对数的加法分配律;
(3)𝜆 𝜇𝒖 = 𝜆𝜇 𝒖, 数乘的结合律;
(4)1𝒖 = 𝒖;数乘的初始条件;
此时,𝑉称为数域𝐹上的线性空间,𝑉中元素称为向量,𝐹中元素称为标量.当𝐹 = ℝ时,称为实线性空间;当𝐹 = ℂ时,称为复线性空间
(注意:这里的加法运算和数乘运算都是广义的可以自己定义,不限于普通的加法和数乘。线性空间实际上就是定义更为一般的向量空间。)
5.线性组合与表示:若线性空间𝑉中的向量𝜶可 由𝑉中一组向量𝜶1, ⋯ , 𝜶𝑛通过线性运算获得, 即存在𝑘𝑖 ∈ 𝐹, 𝑖 = 1, ⋯ , 𝑛满足𝜶 = 𝑘1𝜶1 + ⋯ + 𝑘𝑛𝜶𝑛, 则称向量𝜶是向量组𝜶1, ⋯ , 𝜶𝑛的一个线性组合, 或者说𝜶可由向量组𝜶1, ⋯ , 𝜶𝑛线性表示。

2.例与注意

1.向量空间和矩阵空间是数域上线性空间的基本例子。
2.例有:
(1)正弦函数集合。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值