【导数术】5.指对处理技巧以及截断构造法

5.指对处理技巧

(1)核心原理

所谓的指对处理技巧,就是“指靠对消”。

  • 指数处理技巧:“指靠”

尽可能让 e x e^x ex或者 e − x e^{-x} ex乘以多项式,这时求导以后导数的有效部分便与指数无关。

  • 对数处理技巧:“对消”

尽可能让 ln ⁡ x \ln x lnx去加减多项式而不是乘以多项式,这样求导后就没有 ln ⁡ x \ln x lnx了。

(2)练习

P r a . 5.1 Pra.5.1 Pra.5.1 [对数处理技巧]

设函数 f ( x ) = x e x + ( 1 − e ) x 2 − x 2 ln ⁡ x − a x ≥ 0 f(x)=xe^x+(1-e)x^2-x^2\ln x-ax\geq 0 f(x)=xex+(1e)x2x2lnxax0恒成立,求 a a a范围.

  • S o l u t i o n Solution Solution:考虑到 x > 0 x>0 x>0,等价变形为:

e x + ( 1 − e ) x − x ln ⁡ x ≥ a e^x+(1-e)x-x\ln x \geq a ex+(1e)xxlnxa

等价变形为:
h ( x ) : = e x x + 1 − e − ln ⁡ x − a x ≥ 0 h(x):=\frac {e^x}{x}+1-e-\ln x-\frac a x \geq 0 h(x):=xex+1elnxxa0
恒成立,求导得:
h ′ ( x ) = e x ( 1 x − 1 x 2 ) − 1 x + a x 2 = e x x 2 ( x − 1 ) + 1 x 2 ( a − x ) h'(x)=e^x(\frac {1}{x}-\frac{1}{x^2})-\frac 1 x+\frac a {x^2}=\frac{e^x}{x^2}(x-1)+\frac{1}{x^2}(a-x) h(x)=ex(x1x21)x1+x2a=x2ex(x1)+x21(ax)
注意到 a = 1 a=1 a=1
h ′ ( x ) = x − 1 x 2 ( e x − 1 ) h'(x)=\frac{x-1}{x^2}(e^x-1) h(x)=x2x1(ex1)
有效部分为 x − 1 x-1 x1,所以得 a = 1 a=1 a=1时,函数 h ( x ) h(x) h(x) ( 0 , 1 ) (0,1) (0,1)递减, ( 1 , + ∞ ) (1,+\infty) (1,+)递增

最小值为 h ( 1 ) = 0 h(1)=0 h(1)=0

因此, a = 1 a=1 a=1时, f ( x ) ≥ 0 f(x)\geq 0 f(x)0 f ( 1 ) = 0 f(1)=0 f(1)=0

a < 1 a<1 a<1时,显然成立; a > 1 a>1 a>1时,显然不成立。

故: a a a的取值范围为 ( − ∞ , 1 ] (-\infty,1] (,1]

P r a . 5.2 Pra.5.2 Pra.5.2 [对数处理技巧]

求证: x 3 e x − x ln ⁡ x − x > 0 x^3e^x-x\ln x- x>0 x3exxlnxx>0

注: l n 2 ≈ 0.6931 ln2 \approx 0.6931 ln20.6931 e ≈ 1.649 {\sqrt e}\approx 1.649 e 1.649

  • S o l u t i o n Solution Solution:考虑到 x > 0 x>0 x>0,等价变形为:

h ( x ) : = x 2 e x − ln ⁡ x − 1 > 0    [ 对数处理技巧 ] h(x):=x^2e^x-\ln x- 1> 0 ~~ [对数处理技巧] h(x):=x2exlnx1>0  [对数处理技巧]

求导得:
h ′ ( x ) = e x ( x 2 + 2 x ) − 1 x = e x ( x 3 + 2 x 2 ) − 1 x h'(x)=e^x(x^2+2x)-\frac{1}{x}=\frac{e^x(x^3+2x^2)-1}{x} h(x)=ex(x2+2x)x1=xex(x3+2x2)1
不妨令 p ( x ) = e x ( x 3 + 2 x 2 ) − 1 p(x)=e^x(x^3+2x^2)-1 p(x)=ex(x3+2x2)1

p ′ ( x ) = e x ( x 3 + 5 x 2 + 4 x ) > 0 p'(x)=e^x(x^3+5x^2+4x)>0 p(x)=ex(x3+5x2+4x)>0 p ′ ( x ) p'(x) p(x)递增,而:
p ( 0 ) = − 1 < 0 p ( 1 2 ) = e ( 1 8 + 1 2 − 1 e ) > 0 \begin{aligned}&p(0)=-1<0\\&p(\frac 1 2)=\sqrt e(\frac 1 8 + \frac 1 2 -\frac{1}{\sqrt e})>0 \end{aligned} p(0)=1<0p(21)=e (81+21e 1)>0
所以存在唯一 x 0 ∈ ( 0 , 1 2 ) x_0\in (0,\frac 1 2) x0(0,21)使得 p ( x 0 ) = 0 p(x_0)=0 p(x0)=0

函数 h ( x ) h(x) h(x) ( 0 , x 0 ) (0,x_0) (0,x0)递减, ( x 0 , + ∞ ) (x_0,+\infty) (x0,+)递增且 e x 0 ( x 0 3 + 2 x 0 2 ) − 1 = 0 e^{x_0}(x_0^3+2x_0^2)-1=0 ex0(x03+2x02)1=0

于是:
h ( x ) ≥ h ( x 0 ) = 1 x 0 + 2 − ln ⁡ x 0 − 1 > 1 1 2 + 2 + ln ⁡ 2 − 1 > 0 h(x)\geq h(x_0)=\frac{1}{x_0+2}-\ln x_0 -1>\frac{1}{\frac 1 2 +2}+\ln 2 -1>0 h(x)h(x0)=x0+21lnx01>21+21+ln21>0
证毕。

P r a . 5.3 Pra.5.3 Pra.5.3 [指数处理技巧]

求证: e x + ( 1 − e ) x ≥ x ln ⁡ x + 1 e^x+(1-e)x \geq x\ln x + 1 ex+(1e)xxlnx+1

  • S o l u t i o n Solution Solution:注意到 ln ⁡ x ≤ x − 1 \ln x \leq x-1 lnxx1

x > 0 x >0 x>0,故 x ln ⁡ x ≤ x ( x − 1 ) x\ln x \leq x(x-1) xlnxx(x1)

只需证明: e x + ( 1 − e ) x ≥ x ( x − 1 ) + 1 e^x+(1-e)x\geq x(x-1)+1 ex+(1e)xx(x1)+1

等价于:
r ( x ) : = x 2 − ( 2 − e ) x + 1 e x − 1 ≤ 0    [ 指数处理技巧 ] r(x):=\frac{x^2-(2-e)x+1}{e^x}-1\leq 0 ~~[指数处理技巧] r(x):=exx2(2e)x+110  [指数处理技巧]
注意到:
r ′ ( x ) = − ( x − 1 ) [ x − ( 3 − e ) ] e x r'(x)=\frac{-(x-1)[x-(3-e)]}{e^x} r(x)=ex(x1)[x(3e)]
所以 r ( x ) r(x) r(x) ( 0 , 3 − e ) (0,3-e) (0,3e)递减, ( 3 − e , 1 ) (3-e,1) (3e,1)递增, ( 1 , + ∞ ) (1,+\infty) (1,+)递减

最大值为: max ⁡ { f ( 1 ) , f ( 0 ) } = f ( 1 ) = 0 \max\{f(1),f(0)\}=f(1)=0 max{f(1),f(0)}=f(1)=0

x = 0 x=0 x=0处不能取到。

所以 r ( x ) ≤ 0 r(x)\leq 0 r(x)0,证毕。

5-1指对处理技巧番外-截断构造法

(1)核心原理

所谓的截断构造法,即构造因式分解。

(2)练习

P r a . 5 − 1.1 Pra.5-1.1 Pra.51.1

x > 1 2 x>\frac 1 2 x>21时,函数 f ( x ) = e x − a − a x ln ⁡ x > 0 f(x)=e^x-a-ax\ln x > 0 f(x)=exaaxlnx>0恒成立,求 a a a的取值范围.

  • S o l u t i o n Solution Solution:这是一道典型的恒成立问题,我们也可以基于指对处理技巧进行分析

不妨直接令 f ( 1 ) > 0 f(1)>0 f(1)>0 a < e a<e a<e [端点效应]

采用指数处理技巧,注意到 x > 1 2 > 0 x>\frac 1 2>0 x>21>0,因此原题设等价于:
t ( x ) : = e x x − a x − a ln ⁡ x t(x):=\frac {e^x}{x}-\frac a x - a\ln x t(x):=xexxaalnx
于是,
t ′ ( x ) = ( e x − a ) ( x − 1 ) x 2 t'(x)=\frac{(e^x-a)(x-1)}{x^2} t(x)=x2(exa)(x1)
提取出 u = e x − a u=e^x-a u=exa

(1)当 a ≤ e a \leq \sqrt e ae 时, u > 0 u>0 u>0,此时 t ( x ) t(x) t(x) ( 1 2 , 1 ) (\frac 1 2,1) (21,1)单减, ( 1 , + ∞ ) (1,+\infty) (1,+)单增

t ( x ) min ⁡ = f ( 1 ) = e − a > 0 t(x)_{\min}=f(1)=e-a>0 t(x)min=f(1)=ea>0符合题意;

(2)当 a > e a>\sqrt e a>e 时,令 u = 0 u=0 u=0,得: x = ln ⁡ a < 1 x=\ln a < 1 x=lna<1

此时 1 2 < ln ⁡ a < 1 \frac 1 2 < \ln a <1 21<lna<1时,即 e < a < e \sqrt e < a < e e <a<e时,

函数 t ( x ) t(x) t(x) ( 1 2 , ln ⁡ a ) (\frac 1 2,\ln a) (21,lna)以及 ( 1 , + ∞ ) (1,+\infty) (1,+)单增, ( ln ⁡ a , 1 ) (\ln a,1) (lna,1)单减

只需要满足 t ( 1 2 ) ≥ 0 t(\frac 1 2) \geq 0 t(21)0

得: a ≤ 2 e 2 − ln ⁡ 2 a \leq \frac{2\sqrt e}{2-\ln 2} a2ln22e

而又有:
e − 2 e 2 − ln ⁡ 2 = e ⋅ ( 2 − ln ⁡ 2 ) e − 2 2 − ln ⁡ 2 > 0 e- \frac{2\sqrt e}{2-\ln 2}=\sqrt e\cdot \frac {(2-\ln 2)\sqrt e-2}{2-\ln 2} >0 e2ln22e =e 2ln2(2ln2)e 2>0
于是 a a a的取值范围为: ( − ∞ , 2 e 2 − ln ⁡ 2 ] (-\infty,\frac{2\sqrt e}{2-\ln 2}] (,2ln22e ]

  • 结论

即对于典型的函数结构:
y = e x x n + k x + t ln ⁡ x y=\frac {e^x} {x^n}+\frac k x+t\ln x y=xnex+xk+tlnx
n t = k nt=k nt=k时,其导数可以因式分解。

上面的例题, n = 1 , k = − a , t = − a n=1,k=-a,t=-a n=1,k=a,t=a满足 n t = k nt=k nt=k

P r a . 5 − 1.2 Pra.5-1.2 Pra.51.2

已知函数 f ( x ) = ( x − 1 ) e x f(x)=(x-1)e^x f(x)=(x1)ex g ( x ) = 2 x 2 − x + m − 1. g(x)=2x^2-x+m-1. g(x)=2x2x+m1.

x ∈ [ 0 , 1 ] x\in [0,1] x[0,1]时, f ( x ) ≤ g ( x ) + e f(x) \leq g(x) + e f(x)g(x)+e恒成立,求 m m m的取值范围.

  • S o l u t i o n Solution Solution:即构造因式分解。

左侧含有 x − 1 x-1 x1的部分,不妨考虑右侧构造出 x − 1 x-1 x1

g ( 1 ) = m g(1)=m g(1)=m,于是 g ( x ) − m g(x)-m g(x)m含有因式 x − 1 x-1 x1

变换为:
m − e ≤ p ( x ) = ( x − 1 ) e x − ( x − 1 ) ( 2 x + 1 ) = ( x − 1 ) ( e x − 2 x − 1 ) m-e \leq p(x)=(x-1)e^x-(x-1)(2x+1)=(x-1)(e^x-2x-1) mep(x)=(x1)ex(x1)(2x+1)=(x1)(ex2x1)
u = e x − 2 x − 1 , x ∈ [ 0 , 1 ] u=e^x-2x-1,x\in[0,1] u=ex2x1,x[0,1]

u ′ = e x − 2 u'=e^x-2 u=ex2 u u u ( 0 , ln ⁡ 2 ) (0,\ln 2) (0,ln2)单减, ( ln ⁡ 2 , 1 ) (\ln 2,1) (ln2,1)单增

u min ⁡ = 1 − 2 ln ⁡ 2 < 0 , u ( 0 ) = 0 , u ( 1 ) < 0 u_{\min}=1-2\ln 2<0,u(0)=0,u(1)<0 umin=12ln2<0,u(0)=0,u(1)<0

所以 u ≤ 0 u\leq 0 u0恒成立,而 x − 1 ≤ 0 x-1\leq 0 x10,于是 p ( x ) ≥ 0 , p ( 0 ) = 0 p(x)\geq 0,p(0)=0 p(x)0,p(0)=0

只需要 m − e ≤ 0 m-e\leq 0 me0,所以 m ≤ e m \leq e me

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
智慧校园信息化系统解决方案旨在通过先进的信息技,实现教育的全方位创新和优质资源的普及共享。该方案依据国家和地方政策背景,如教育部《教育信息化“十三五”规划》和《教育信息化十年发展规划》,以信息技的革命性影响为指导,推进教育信息化建设,实现教育思想和方的创新。 技发展为智慧校园建设提供了强有力的支撑。方案涵盖了互连互通、优质资源共享、宽带网络、移动APP、电子书包、电子教学白板、3D打印、VR虚拟教学等技应用,以及大数据和云计算技,提升了教学数据记录和分析水平。此外,教育资源公共服务平台、教育管理公共服务平台等平台建设,进一步提高了教学、管控的效率。 智慧校园系统由智慧教学、智慧管控和智慧办公三大部分组成,各自具有丰富的应用场景。智慧教学包括微课、公开课、精品课等教学资源的整合和共享,支持在线编辑、录播资源、教学分析等功能。智慧管控则通过平安校园、可视对讲、紧急求助、视频监控等手段,保障校园安全。智慧办公则利用远程视讯、无纸化会议、数字会议等技,提高行政效率和会议质量。 教育录播系统作为智慧校园的重要组成部分,提供了一套满足学校和教育局需求的解决方案。它包括标准课室、微格课室、精品课室等,通过自动五机位方案、高保真音频采集、一键式录课等功能,实现了优质教学资源的录制和共享。此外,录播系统还包括互动教学、录播班班通、教育中控、校园广播等应用,促进了教育资源的均衡化发展。 智慧办公的另一重点是无纸化会议和数字会议系统的建设,它们通过高效的文件管理、会议文件保密处理、本地会议的音频传输和摄像跟踪等功能,实现了会议的高效化和集中管控。这些系统不仅提高了会议的效率和质量,还通过一键管控、无线管控等设计,简化了操作流程,使得会议更加便捷和环保。 总之,智慧校园信息化系统解决方案通过整合先进的信息技和教学资源,不仅提升了教育质量和管理效率,还为实现教育均衡化和资源共享提供了有力支持,推动了教育现代化的进程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

指针常量

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值