【导数术】10.导数数列不等式

10.导数数列不等式

(1)核心原理

导数数列不等式的题目一般是第一小问证明一个导数恒等式,这种题目一般比较简单,直接求导即可证明。第二问是利用第一问的结论证明一个数列不等式。

[注意]:一般要用到第一问结论,不要凭空证明。

(1-1)和式放缩

一般来说,导数数列不等式左侧是数列形式,右侧是和时,即形如:
a 1 + a 2 + . . . + a n < f ( n ) a_1+a_2+...+a_n<f(n) a1+a2+...+an<f(n)
考虑到左侧是求和形式,右侧如果也是求和形式,就等价于证明两个数列的前 n n n项和的大小关系。

证明这个不等式,考虑证明更强的一个不等式,即:

证明左侧数列每一项都小于或者大于右侧数列的对应项

这便是所谓的和式放缩了。

核心问题又来了:如何求出 f ( n ) f(n) f(n)对应的通项公式?

其实很简单,那便是:

  • f ( 0 ) = 0 f(0)=0 f(0)=0时,右侧 b n = f ( n ) − f ( n − 1 ) b_n=f(n)-f(n-1) bn=f(n)f(n1)
  • f ( 0 ) ≠ 0 f(0)\neq 0 f(0)=0时,右侧

b n = { f ( 1 ) , n = 1 f ( n ) − f ( n − 1 ) , n ≥ 2 b_n=\left\{ \begin{aligned} &f(1),&n=1\\ &f(n)-f(n-1),&n\geq2 \end{aligned} \right. bn={f(1),f(n)f(n1),n=1n2

(1-2)积式放缩

同理,设要证明的是形如:
a 1 a 2 . . . a n < f ( n ) a_1a_2...a_n<f(n) a1a2...an<f(n)
把左右两侧看成两个数列乘积的形式,一般要求两侧对应的数列每一项均正。

考虑到左侧是求积形式,右侧如果也是求积形式,就等价于证明两个数列的前 n n n项积的大小关系。

证明这个不等式,考虑证明更强的一个不等式,即:

证明左侧数列每一项都小于或者大于右侧数列的对应项

右侧数列通项为:

  • f ( 0 ) = 1 f(0)=1 f(0)=1时,右侧 b n = f ( n ) f ( n − 1 ) b_n=\frac {f(n)}{f(n-1)} bn=f(n1)f(n)
  • f ( 0 ) ≠ 1 f(0)\neq 1 f(0)=1时,右侧

b n = { f ( 1 ) , n = 1 f ( n ) f ( n − 1 ) , n ≥ 2 b_n=\left\{ \begin{aligned} &f(1),&n=1\\\\ &\frac{f(n)}{f(n-1)},&n\geq2 \end{aligned} \right. bn= f(1),f(n1)f(n),n=1n2

[补充] 事实上对积式放缩两侧取对数即得和式放缩,这也是要求每一项均正的本质。

(1-3)等比放缩

所谓的等比放缩,即证明形如和式放缩:
a 1 + a 2 + . . . + a n < f ( n ) a_1+a_2+...+a_n<f(n) a1+a2+...+an<f(n)
我们能够证明:
a n + 1 a n < q ( n ∈ N + )      [ 一般 0 < q < 1 ] \frac{a_{n+1}}{a_n}<q(n\in\N_+)~~~~[一般0<q<1] anan+1<q(nN+)    [一般0<q<1]
从而:
{ a 2 < a 1 q a 3 < a 1 q 2 . . . . . . a n < a 1 q n − 1 \left\{ \begin{aligned} &a_2<a_1q\\ &a_3<a_1q^2\\ &......\\ &a_n<a_1q^{n-1} \end{aligned} \right. a2<a1qa3<a1q2......an<a1qn1
所以:
a 1 + a 2 + . . . + a n < a 1 + a 1 q + a 1 q 2 + . . . + a 1 q n − 1 = a 1 ( 1 + q + q 2 + . . . ) = a 1 1 − q n 1 − q < a 1 1 − q \begin{aligned} a_1+a_2+...+a_n&<a_1+a_1q+a_1q^2+...+a_1q^{n-1}\\ &=a_1(1+q+q^2+...)\\ &=a_1\frac{1-q^n}{1-q}\\ &<\frac{a_1}{1-q} \end{aligned} a1+a2+...+an<a1+a1q+a1q2+...+a1qn1=a1(1+q+q2+...)=a11q1qn<1qa1
根据这个结果进行后续的证明即可。

(2)练习

P r a . 10.1 Pra.10.1 Pra.10.1 [和式放缩]

已知函数 f ( x ) = x − 1 x − a ln ⁡ x f(x)=x-\frac 1 x -a\ln x f(x)=xx1alnx

(1)若函数 f ( x ) f(x) f(x) x = 1 x=1 x=1处取得极值,求 a a a以及 f ( x ) f(x) f(x)的极值;

(2)①若 x ≥ 1 x \geq 1 x1时, f ( x ) ≥ 0 f(x) \geq 0 f(x)0恒成立,求 a a a范围;

​ ②证明:当 n ∈ N + n \in N_+ nN+时,
ln ⁡ 2 2 + ln ⁡ 2 3 2 + . . . + ln ⁡ 2 n + 1 n < n n + 1 \ln^22+\ln^2 \frac 3 2 +...+\ln^2 \frac {n + 1}n < \frac n {n + 1} ln22+ln223+...+ln2nn+1<n+1n

  • S o l u t i o n Solution Solution:(1) a = 2 a=2 a=2;(2)见下述证明

考虑到 a = 2 a=2 a=2时有:
x − 1 x − 2 ln ⁡ x ≥ 0 ( x ≥ 1 ) x-\frac{1}{x}-2\ln x\geq0(x\geq1) xx12lnx0(x1)
注意到右侧 f ( 0 ) = 0 f(0)=0 f(0)=0,左右侧通项公式分别为:
a n = ln ⁡ 2 n + 1 n , b n = n n + 1 − n − 1 n = 1 n ( n + 1 ) a_n=\ln^2\frac{n+1}{n},b_n=\frac{n}{n+1}-\frac{n-1}{n}=\frac{1}{n(n+1)} an=ln2nn+1,bn=n+1nnn1=n(n+1)1
采用和式放缩,加强证明 a n ≤ b n a_n\leq b_n anbn即可,不妨令:
t = n + 1 n > 1 t=\frac{n+1}{n}>1 t=nn+1>1
等价于证明:
ln ⁡ 2 t ≤ t + 1 t − 2 , t > 1 \ln ^2t\leq t + \frac1 t -2,t>1 ln2tt+t12,t>1
这是显然的,由已证明的不等式有:
ln ⁡ x 2 ≤ x − 1 x \ln x^2\leq x-\frac1 x lnx2xx1
使用 x \sqrt x x 代替 x x x可得:
ln ⁡ x ≤ x − 1 x ( x ≥ 1 ) \ln x\leq \sqrt x-\frac{1}{\sqrt x}(x\geq1) lnxx x 1(x1)
两侧均为正数,平方得:
ln ⁡ 2 x ≤ x + 1 x − 2 ( x ≥ 1 ) \ln^2 x\leq x+\frac1 x-2(x\geq1) ln2xx+x12(x1)
这便是要证明的,证毕。

P r a . 10.2 Pra.10.2 Pra.10.2

已知函数 f ( x ) = a x + b x − 1 + c ( a > 0 ) f(x)=ax+bx^{-1}+c(a>0) f(x)=ax+bx1+c(a>0)在点 ( 1 , f ( 1 ) ) (1,f(1)) (1,f(1))的切线方程为 y = x − 1 y=x-1 y=x1.

(1)若 f ( x ) > ln ⁡ x f(x)>\ln x f(x)>lnx [ 1 , + ∞ ) [1,+\infty) [1,+)恒成立,求 a a a的取值范围.

(2)求证:
∑ i = 1 n 1 i > ln ⁡ ( n + 1 ) + n 2 ( n + 1 ) ( n ∈ N + ) \sum\limits_{i=1}^n\frac 1 i>\ln(n+1)+\frac{n}{2(n+1)}(n\in \N_+) i=1ni1>ln(n+1)+2(n+1)n(nN+)

  • S o l u t i o n Solution Solution:第一问 a ≥ 1 2 a\geq \frac1 2 a21,第二问易证,略。
P r a . 10.3 Pra.10.3 Pra.10.3

已知函数 f ( x ) = x − ln ⁡ ( x + a ) ( a > 0 ) f(x)=x-\ln(x+a)(a>0) f(x)=xln(x+a)(a>0)的最小值为 0 0 0.

(1)求 a a a

(2)对 ∀ x ∈ [ 0 , + ∞ ) , f ( x ) ≤ k x 2 \forall x\in[0,+\infty),f(x)\leq kx^2 x[0,+),f(x)kx2,求 k min ⁡ k_{\min} kmin

(3)求证:
∑ i = 1 n 2 2 i − 1 − ln ⁡ ( 2 n + 1 ) < 2 , n ∈ N + \sum\limits_{i=1}^{n}\frac{2}{2i-1}-\ln(2n+1)<2,n\in \N_+ i=1n2i12ln(2n+1)<2,nN+

  • S o l u t i o n Solution Solution a = 1 , k min ⁡ = 1 2 a=1,k_{\min}=\frac 1 2 a=1,kmin=21

证明题把左侧看成一个新数列,通项公式为:
a n = 2 2 n − 1 − ln ⁡ 2 n + 1 2 n − 1 a_n=\frac {2}{2n-1}-\ln\frac{2n+1}{2n-1} an=2n12ln2n12n+1
第二问可得:
x − ln ⁡ ( x + 1 ) ≤ 1 2 x 2 x-\ln(x+1)\leq \frac 1 2x^2 xln(x+1)21x2
考虑到:
ln ⁡ 2 n + 1 2 n − 1 = ln ⁡ ( 1 + 2 2 n − 1 ) \ln\frac{2n+1}{2n-1}=\ln(1+\frac{2}{2n-1}) ln2n12n+1=ln(1+2n12)
2 2 n − 1 \frac 2 {2n-1} 2n12替代 x x x,可得:
a n < 2 ( 2 n − 1 ) 2 < 2 ( 2 n − 3 ) ( 2 n − 1 ) , w h e n   n ≥ 2 a_n<\frac{2}{(2n-1)^2}<\frac{2}{(2n-3)(2n-1)},when~ n\geq2 an<(2n1)22<(2n3)(2n1)2,when n2
裂项求和证明小于 2 2 2即可,略。

P r a . 10.4 Pra.10.4 Pra.10.4[积式放缩]

已知函数 f ( x ) = e x − e x f(x)=e^x-ex f(x)=exex.

(1)求 f ( x ) f(x) f(x)的最小值;

(2)求证:
e 1 + 1 2 + 1 3 + . . . + 1 n > n + 1 e^{1+\frac 1 2+\frac 1 3+...+\frac 1 n}>n+1 e1+21+31+...+n1>n+1

  • S o l u t i o n Solution Solution min ⁡ = 0 \min =0 min=0,直接积式放缩即可。
P r a . 10.5 Pra.10.5 Pra.10.5[等比放缩]

已知函数 f ( x ) = e x + a x f(x)=e^x+ax f(x)=ex+ax.

(1)若 f ( x ) ≥ 1 f(x)\geq 1 f(x)1 x ≥ 0 x\geq 0 x0时恒成立,求 a a a的取值范围.

(2)求证:
( n − 1 n ) n + ( n − 2 n ) n + . . . + ( 1 n ) n < 1 1 − e − 1 (\frac{n-1}{n})^n+(\frac{n-2}{n})^n+...+(\frac 1 n)^n<\frac{1}{1-e^{-1}} (nn1)n+(nn2)n+...+(n1)n<1e11

  • S o l u t i o n Solution Solution a ≥ − 1 a\geq -1 a1

通项公式为:
a k = ( n − k n ) n , k = 1 , 2 ⋯   , n − 1 a_k=(\frac{n-k}{n})^n,k=1,2\cdots,n-1 ak=(nnk)n,k=1,2,n1
有:
a k a k − 1 = ( n − k n − k + 1 ) n = ( 1 − 1 n − k + 1 ) n \frac{a_k}{a_{k-1}}=(\frac{n-k}{n-k+1})^n=(1-\frac{1}{n-k+1})^n ak1ak=(nk+1nk)n=(1nk+11)n
第一问证明了:
e x ≥ x + 1 e^x\geq x+1 exx+1
− 1 n − k + 1 -\frac {1}{n-k+1} nk+11替代 x x x,于是:
( 1 − 1 n − k + 1 ) n ≤ e − n n − k + 1 (1-\frac 1{n-k+1})^n\leq e^{{\frac{-n}{n-k+1}}} (1nk+11)nenk+1n
显然右侧是关于 k k k的减函数, k = 1 k=1 k=1时取最大值,于是:
( 1 − 1 n − k + 1 ) n ≤ e − n n − k + 1 ≤ e − 1 (1-\frac 1{n-k+1})^n\leq e^{{\frac{-n}{n-k+1}}}\leq e^{-1} (1nk+11)nenk+1ne1
于是:
a 2 ≤ a 1 e − 1 a 3 < a 2 e − 1 < a 1 e − 2 ⋯ a n < ⋯ a 1 e − ( n − 2 ) \begin{aligned} &a_2\leq a_1e^{-1}\\ &a_3<a_2e^{-1}<a_1e^{-2}\\ &\cdots\\ &a_n<\cdots a_1e^{-(n-2)} \end{aligned} a2a1e1a3<a2e1<a1e2an<a1e(n2)
所以:
a 1 + a 2 + . . . + a n < a 1 + a 1 e − 1 + . . . + a 1 e − ( n − 2 ) = a 1 ( 1 + e − 1 + . . . + e − ( n − 2 ) ) < 1 ⋅ [ 1 − e − ( n − 2 ) 1 − e − 1 ] < 1 1 − e − 1 \begin{aligned} &a_1+a_2+...+a_n<a_1+a_1e^{-1}+...+a_1e^{-(n-2)}\\ &=a_1(1+e^{-1}+...+e^{-(n-2)})\\ &<1\cdot[\frac{1-e^{-(n-2)}}{1-e^-1}]\\ &<\frac{1}{1-e^{-1}} \end{aligned} a1+a2+...+an<a1+a1e1+...+a1e(n2)=a1(1+e1+...+e(n2))<1[1e11e(n2)]<1e11

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

指针常量

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值