MetaCost与重采样结合的不平衡分类算法——RS-MetaCost

本文提出了一种名为RS-MetaCost的不平衡分类算法,它结合了重采样技术和MetaCost算法。通过过采样少数类或欠采样多数类来减轻数据不平衡,然后利用m-estimation改进少数类的预测概率。实验结果显示,RS-MetaCost在保持高整体分类精度的同时,显著提高了少数类的分类精度,尤其在过采样情况下效果更佳。
摘要由CSDN通过智能技术生成

摘要

不平衡分类是当今机器学习中的研究热点与难点。为提高不平衡数据的分类效果,提出MetaCost与重采样结合的不平衡分类算法——RS-MetaCost。首先在MetaCost划分子集前对不平衡数据集进行重采样,即过采样少数类或欠采样多数类,以降低或消除数据不平衡程度;其次在预测概率阶段,利用m-estimation提高少数类预测概率。采用6组模拟数据集与10组实例数据集,将RS-MetaCost与经典算法进行比较实验。结果表明,在大多数数据集上,RS-MetaCost在保证整体分类精度很高的前提下,还能提高少数类的分类精度,且过采样下的RS-MetaCost优于欠采样下的RS-MetaCost。

引言

在互联网技术与人工智能技术快速发展的时代背景下,数据分类是机器学习、数据挖掘等领域的重要任务之一。传统的分类算法例如神经网络、逻辑回归、支持向量机、决策树等[</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值