面向6G的无蜂窝大规模MIMO无线传输技术

本文介绍了面向6G的无蜂窝大规模MIMO无线传输技术,包括高频和低频段的关键技术。无蜂窝系统通过分布式协作传输,解决了传统蜂窝架构的局限性,提升了系统性能。文章分析了无蜂窝系统面临的信道信息获取、分布式收发机设计等挑战,并探讨了解决方案和未来研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【摘  要】无蜂窝是一种新型的组网方式,对6G超高峰值速率、超高频谱效率、海量连接以及超低时延和超高可靠传输均有重要的支撑作用。介绍了面向6G的无蜂窝大规模MIMO系统中的无线传输技术,包括高频段和低频段的无蜂窝大规模MIMO以及网络辅助全双工等关键技术,分析了无蜂窝系统面临的瓶颈问题,包括信道信息获取、分布式收发机设计、交叉链路干扰等,并提出了一些解决思路和新的研究方向。

【关键词】6G无线传输技术;MIMO;无蜂窝大规模MIMO

0   引言

5G移动通信系统已商用化部署,其持续演进将与实体经济深度融合,形成良好的5G产业生态。在此背景下,国际组织及各国政府均已计划开展6G移动通信系统的研究。目前,虽然6G还未有统一的定义,但应用场景、技术趋势及关键指标方面已有一些初步的共识[1]。2021年6月6日,我国工信部IMT-2030(6G)推进组正式发布了《6G总体愿景与潜在关键技术》白皮书[2],梳理出6G的总体愿景和八大业务应用场景及相应的指标需求,提出了6G的一些关键技术指标,包括:系统峰值传输速率将达到Tbit/s量级、用户体验速率达到10 Gbit/s、时延低至百μs量级同时可靠度达到99.999 99%等,并提出了十大关键技术,指出6G将在5G的基础上,继续深度挖掘低频段的潜力,提高系统的频谱效率;深耕毫米波频段提高传输速率及系统的鲁棒性,并

### 实现面向B5G/6G通感一体化的分布式大规模MIMO主动定位系统 在设计用于B5G/6G通信和传感融合的大规模MIMO主动定位系统时,MATLAB提供了一个强大的平台来模拟和验证这些复杂系统的性能。下面是一个简化版的设计框架,旨在展示如何利用MATLAB构建此类系统。 #### 构建环境模型 为了创建一个真实的测试场景,在MATLAB中可以定义三维空间内的多个节点位置以及它们之间的信道特性。这通常涉及到随机分布的目标物体,并设定发射机与接收机的位置关系[^2]。 ```matlab % 定义目标数量及坐标范围 numTargets = 10; targetPositions = rand(numTargets, 3)*100; % 随机分布在100m立方体内 % 设置基站(BS)和其他基础设施设备的位置 bsPosition = [0, 0, 0]; ``` #### 初始化天线阵列配置 对于大规模MIMO系统而言,合理安排天线单元的数量及其布局至关重要。这里采用均匀直线阵(UULA)作为例子来进行说明: ```matlab % ULA参数设置 numAntennas = 64; % 天线数目 antennaSpacing = 0.5; % 半波长间距 ulaArray = phased.ULA('NumElements', numAntennas,'ElementSpacing', antennaSpacing); ``` #### 设计传输信号结构 考虑到未来无线网络的需求特点,应该选用适合于高带宽应用且具有良好自相关特性的序列形式。例如Zadoff-Chu(ZC)序列常被用来生成导频符号以支持精确的时间同步和频率估计[^1]。 ```matlab zcSeqLength = nextpow2(ceil(sqrt(numAntennas))); zcSequence = comm.ZadoffChuSequence('SequenceIndex', 1,... 'SamplesPerFrame', zcSeqLength); txSignal = complex(randn(zcSeqLength, 1), randn(zcSeqLength, 1)); ``` #### 执行信道传播过程仿真 通过引入特定类型的多径效应模型,比如基于几何统计学原理建立起来的城市微蜂窝环境下非视距(NLOS)条件下的瑞利衰落信道,能够更贴近实际状况地反映电磁波从源到目的地所经历的变化情况。 ```matlab channelModel = comm.RayleighChannel('SampleRate', 1e6,... 'PathDelays', [0 2]*1e-6,... 'AveragePathGains', [-3 0]); rxSignals = zeros(length(txSignal), length(targetPositions)); for i = 1:length(targetPositions) [~, rxSignals(:,i)] = channelModel(txSignal); end ``` #### 数据处理与目标检测算法开发 最后一步是对接收到的数据实施必要的预处理操作之后再运用先进的机器学习方法或是传统的DOA估计算法完成最终的任务——即确定各个散射体的具体方位角信息并据此绘制出整个监测区域的地图图像[^3]。 ```matlab % 假设已经完成了初步滤波和平滑化工作... doaEstimator = rootmusic(ulaArray, numel(targetPositions)); estimatedAngles = doaEstimator(rxSignals); imagesc(estimatedAngles'); colorbar; title('Estimated DOAs of Targets'); xlabel('Target Index'); ylabel('Angle (degrees)'); ``` 上述代码片段仅提供了概念上的指导而非完整的解决方案;具体实现细节会依据应用场景的不同而有所差异。此外,还需要考虑诸如硬件资源分配优化等问题才能真正达到实用水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值