多尺度视角特征动态融合的盗窃犯罪预测模型

本文提出了一种基于自注意力和多尺度视角特征动态融合的盗窃犯罪预测模型,旨在提高预测准确率和灵活性。通过动态自适应数据预处理、多视角特征融合、多尺度窗口编码器和分类器,模型能更好地捕捉时空特征,解决了传统方法在特征融合和时序适应性上的不足。实验表明,提出的DF-SAMS模型在多种地图栅格划分下,预测性能优于CNN、LSTM等常见模型,特别是在5×55×5、7×77×7、9×99×9栅格地图划分下,表现出较高的精确率和F1值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

盗窃犯罪是始终困扰社会治安稳定的一大难题,它是犯罪人以非法占有为目的,从而实施严重影响社会秩序、侵犯他人人身财产安全的犯罪行为[1]。根据中国统计年鉴关于公安机关立案的刑事案件统计情况,近20年来,中国盗窃类案件数始终占到案件总数的一半以上[2],给人民的财产和隐私安全带来巨大威胁。特别是近几年来,盗窃案件呈现出作案手段隐蔽、案件线索难寻的特点,所以在此类案件的防控中主动预防优于被动响应。“实现对犯罪空间内的发案趋势进行预测”是开展主动预防的最优路径,也是公安机关实现“智慧警务”运作模式的必然选择。如果能够实现对犯罪空间内发案趋势的有效预测,则可以较为准确地研判各个犯罪空间内的发案情况,从而锁定犯罪热点地区,为公安机关提前防控、合理布警提供科学依据。

在实战工作中,盗窃犯罪发案趋势的预测多依靠公安办案经验或人工统计规律给出定性的结论[3]。如今伴随着大数据环境的数据挖掘和人工智能技术的崛起,该类犯罪的发案趋势便可依赖智能技术得到更为科学精准的定量结论,为打防工作提供科学量化指导。

目前,借助智能算法进行盗窃犯罪预测研究主要是从时空角度入手,依托历史发案数据,融合地理空间特征构建数学模型,预测犯罪的高发区域和时段[4]。颜靖华等[5]以天为犯罪

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值