盗窃犯罪是始终困扰社会治安稳定的一大难题,它是犯罪人以非法占有为目的,从而实施严重影响社会秩序、侵犯他人人身财产安全的犯罪行为[1]。根据中国统计年鉴关于公安机关立案的刑事案件统计情况,近20年来,中国盗窃类案件数始终占到案件总数的一半以上[2],给人民的财产和隐私安全带来巨大威胁。特别是近几年来,盗窃案件呈现出作案手段隐蔽、案件线索难寻的特点,所以在此类案件的防控中主动预防优于被动响应。“实现对犯罪空间内的发案趋势进行预测”是开展主动预防的最优路径,也是公安机关实现“智慧警务”运作模式的必然选择。如果能够实现对犯罪空间内发案趋势的有效预测,则可以较为准确地研判各个犯罪空间内的发案情况,从而锁定犯罪热点地区,为公安机关提前防控、合理布警提供科学依据。
在实战工作中,盗窃犯罪发案趋势的预测多依靠公安办案经验或人工统计规律给出定性的结论[3]。如今伴随着大数据环境的数据挖掘和人工智能技术的崛起,该类犯罪的发案趋势便可依赖智能技术得到更为科学精准的定量结论,为打防工作提供科学量化指导。
目前,借助智能算法进行盗窃犯罪预测研究主要是从时空角度入手,依托历史发案数据,融合地理空间特征构建数学模型,预测犯罪的高发区域和时段[4]。颜靖华等[5]以天为犯罪