【摘 要】特定辐射源识别是一种有效的工业物联网数据流保护技术,现有的SEI方法可以通过机器学习来实现,而主流的SVM算法针对大规模训练样本会消耗大量的机器内存和运算时间。为了解决上述问题,提出了一种信号特征知识图谱与宽度学习架构的SEI方法KG-BLS算法,该方法创新性地建立了信号特征数据库,且利用KG对信号特征实现可视化表征。此外,该方法依靠特征映射节点和增强节点的非线性变换,通过单层前向传播网络来求解复杂的分类问题。仿真结果表明,所提出的KG-BLS算法在识别性能和计算开销方面具有巨大的优势。
【关键词】特定辐射源识别;信号特征;知识图谱;宽度学习;工业物联网
0 引言
在工业物联网环境下,工业数据流呈现数据量大、实时性强、信息传输多样化等特点[1-3],难以进行识别和分类,从而会影响后序应用如故障检测,且进一步会对无线通信的安全造成威胁。由此可见,在工业物联网环境下特定辐射源识别(SEI, Specific Emitter Identification)[4]意义重大。
近年来,包括机器学习(ML, Machine Learning)和深度学习(DL, Deep Learning)在内的人工智能方法在信号处理领域取得了巨大成就。