基于信号特征知识图谱与宽度学习架构的特定辐射源识别

本文提出了一种基于信号特征知识图谱与宽度学习架构的特定辐射源识别方法(KG-BLS)。通过构建信号特征数据库和知识图谱,解决了传统机器学习方法(如SVM)在大规模数据上的计算复杂性和内存消耗问题。仿真实验显示,KG-BLS在识别性能和计算开销上优于SVM,提高了识别效率。
摘要由CSDN通过智能技术生成

【摘  要】特定辐射源识别是一种有效的工业物联网数据流保护技术,现有的SEI方法可以通过机器学习来实现,而主流的SVM算法针对大规模训练样本会消耗大量的机器内存和运算时间。为了解决上述问题,提出了一种信号特征知识图谱与宽度学习架构的SEI方法KG-BLS算法,该方法创新性地建立了信号特征数据库,且利用KG对信号特征实现可视化表征。此外,该方法依靠特征映射节点和增强节点的非线性变换,通过单层前向传播网络来求解复杂的分类问题。仿真结果表明,所提出的KG-BLS算法在识别性能和计算开销方面具有巨大的优势。

【关键词】特定辐射源识别;信号特征;知识图谱;宽度学习;工业物联网

0   引言

在工业物联网环境下,工业数据流呈现数据量大、实时性强、信息传输多样化等特点[1-3],难以进行识别和分类,从而会影响后序应用如故障检测,且进一步会对无线通信的安全造成威胁。由此可见,在工业物联网环境下特定辐射源识别(SEI, Specific Emitter Identification)[4]意义重大。

近年来,包括机器学习(ML, Machine Learning)和深度学习(DL, Deep Learning)在内的人工智能方法在信号处理领域取得了巨大成就。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值