分析:该题是双变量积分型数列极限问题。数列极限问题通常情况下有1.归纳法:通过函数特征规律求解。2.夹逼定理。3.积分定义。4.单调有界函数必有极限(充分不必要),双变量极限问题通常将x作为常数进行分类讨论。对于积分与极限结合的问题,通常采用放缩和夹逼定理结合的办法进行求解。
问题:拉格朗日的用法局限性在哪?
简答:
由
l
a
g
r
a
n
g
e
lagrange
lagrange可知,在
∀
x
∈
[
0
,
1
]
时
∃
f
′
(
ξ
)
=
sin
(
a
+
x
n
)
−
s
i
n
(
a
)
=
cos
(
a
+
ξ
)
ξ
∈
(
0
,
x
n
)
.
\forall x \in [0,1] 时 \exists f'(\xi)=\sin(a+x^{n})-sin(a)=\cos(a+\xi)\quad \xi \in(0,x^{n}) .
∀x∈[0,1]时∃f′(ξ)=sin(a+xn)−sin(a)=cos(a+ξ)ξ∈(0,xn).
进而有:
0
≤
∣
I
n
−
sin
(
a
)
∣
=
∣
∫
0
1
sin
(
a
+
x
n
)
−
sin
(
a
)
d
x
∣
≤
∫
0
1
∣
sin
(
a
+
x
n
)
−
sin
(
a
)
∣
d
x
=
∫
0
1
∣
cos
(
a
+
ξ
)
∣
d
x
≤
∫
0
1
∣
cos
(
a
+
x
n
)
∣
d
x
.
0\le|I_{n}-\sin(a)|=|\int_{0}^{1}\sin(a+x^{n})-\sin(a)dx|\le\int_{0}^{1}|\sin(a+x^{n})-\sin(a)|dx=\int_{0}^{1}|\cos(a+\xi)|dx\le\int_{0}^{1}|\cos(a+x^{n})|dx.
0≤∣In−sin(a)∣=∣∫01sin(a+xn)−sin(a)dx∣≤∫01∣sin(a+xn)−sin(a)∣dx=∫01∣cos(a+ξ)∣dx≤∫01∣cos(a+xn)∣dx.
最后由夹逼定理:
0
≤
[
I
n
−
sin
(
a
)
]
≤
0
求
得
。
0\le[I_{n}-\sin(a)]\le0求得。
0≤[In−sin(a)]≤0求得。
分析:该题是二元微分变参数问题。变换参数问题通常有一变一,一变多、多变一、多变多几种。基本思路是:
1.确定变量之间的关系式。
2.对原变量函数进行微积分。
3.变量代换求解。
简答:
∂
z
∂
x
=
f
′
∗
(
−
y
x
2
)
;
∂
2
z
∂
x
2
=
f
′
′
∗
(
y
2
x
4
)
+
f
′
∗
(
2
y
x
3
)
.
\frac{\partial z}{\partial x}=f' *(-\frac{y}{x^2});\quad\frac{\partial ^{2}z}{\partial x^{2}}=f''*(\frac{y^{2}}{x^4})+f'*(\frac{2y}{x^3}).
∂x∂z=f′∗(−x2y);∂x2∂2z=f′′∗(x4y2)+f′∗(x32y).
∂ z ∂ y = f ′ ∗ ( 1 x ) ; ∂ 2 z ∂ y 2 = f ′ ′ ∗ ( 1 x 2 ) \frac{\partial z}{\partial y}=f' *(\frac{1}{x});\quad\frac{\partial ^{2}z}{\partial y^{2}}=f''*(\frac{1}{x^{2}}) ∂y∂z=f′∗(x1);∂y2∂2z=f′′∗(x21)
∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = 0 = f ′ ′ ∗ ( y 2 + x 2 x 4 ) + f ′ ∗ ( 2 y x 3 ) x > 0. \frac{\partial ^{2}z}{\partial x^{2}}+\frac{\partial ^{2}z}{\partial y^{2}}=0=f''*(\frac{y^{2}+x^{2}}{x^{4}})+f'*(\frac{2y}{x^3}) \quad x>0. ∂x2∂2z+∂y2∂2z=0=f′′∗(x4y2+x2)+f′∗(x32y)x>0.
u
=
y
x
f
′
′
∗
(
1
+
u
2
)
+
f
′
(
2
u
)
=
0.
全
微
分
求
解
即
可
。
u=\frac{y}{x} \quad f''*(1+u^{2})+f'(2u)=0. 全微分求解即可。
u=xyf′′∗(1+u2)+f′(2u)=0.全微分求解即可。
分析:积分的物理应用问题,第一问答案为
8
π
8 \pi
8π.
第二问由两个解法:
错解:
显
然
v
y
=
v
(
t
)
,
只
要
确
定
一
个
仅
含
有
v
,
t
的
方
程
,
又
由
V
=
t
将
y
=
1
时
的
t
求
出
即
可
。
显然v_{y}=v(t),只要确定一个仅含有v,t的方程,又由V=t将y=1时的t求出即可。
显然vy=v(t),只要确定一个仅含有v,t的方程,又由V=t将y=1时的t求出即可。
简答:
V
=
π
∫
0
1
y
d
y
=
π
2
,
又
V
=
t
=
π
∫
0
v
t
(
y
)
2
d
y
=
π
2
y
2
∣
0
v
t
;
V=\pi \int_{0}^{1}ydy=\frac{\pi}{2},又V=t=\pi \int_{0}^{v t}(\sqrt y)^{2}dy=\frac{\pi}{2} y^{2}|_{0}^{vt};
V=π∫01ydy=2π,又V=t=π∫0vt(y)2dy=2πy2∣0vt;
2
π
=
v
2
∗
t
;
又
当
y
=
1
时
t
=
π
2
;
得
v
=
2
π
.
\quad\quad\frac{2}{\pi}=v^2*t;又当y=1时t=\frac{\pi}{2};得v=\frac{2}{\pi}.
π2=v2∗t;又当y=1时t=2π;得v=π2.
错误原因:由题可知液面上升速率就是 y ′ y' y′,即 y ′ = v y'=v y′=v;但我仅考虑了 v v v会随 t , y t,y t,y变化而变化。实际上v应该是一个独立于t的变量,应该设 ∂ y ∂ t = v . ( 或 者 v 本 身 就 是 常 数 ) 。 \frac{\partial y}{\partial t}=v.(或者v本身就是常数)。 ∂t∂y=v.(或者v本身就是常数)。
正解:
由
题
可
知
,
体
积
增
长
速
率
为
d
V
d
t
=
1
,
又
V
=
π
∗
∫
0
v
t
y
d
y
;
同
时
对
t
求
导
有
:
由题可知,体积增长速率为\frac{dV}{dt}=1,又V=\pi*\int_{0}^{vt}ydy;同时对t求导有:
由题可知,体积增长速率为dtdV=1,又V=π∗∫0vtydy;同时对t求导有:
1
=
π
(
v
t
)
(
v
t
)
′
,
y
=
v
t
=
1
1=\pi (vt)(vt)',\quad y=vt=1
1=π(vt)(vt)′,y=vt=1
又
y
=
1
,
所
以
y
′
=
v
=
1
π
.
又y=1,所以y'=v=\frac{1}{\pi}.
又y=1,所以y′=v=π1.