数二四套卷一大题改错

在这里插入图片描述
分析:该题是双变量积分型数列极限问题。数列极限问题通常情况下有1.归纳法:通过函数特征规律求解。2.夹逼定理。3.积分定义。4.单调有界函数必有极限(充分不必要),双变量极限问题通常将x作为常数进行分类讨论。对于积分与极限结合的问题,通常采用放缩和夹逼定理结合的办法进行求解。
问题:拉格朗日的用法局限性在哪?

简答:
l a g r a n g e lagrange lagrange可知,在 ∀ x ∈ [ 0 , 1 ] 时 ∃ f ′ ( ξ ) = sin ⁡ ( a + x n ) − s i n ( a ) = cos ⁡ ( a + ξ ) ξ ∈ ( 0 , x n ) . \forall x \in [0,1] 时 \exists f'(\xi)=\sin(a+x^{n})-sin(a)=\cos(a+\xi)\quad \xi \in(0,x^{n}) . x[0,1]f(ξ)=sin(a+xn)sin(a)=cos(a+ξ)ξ(0,xn).
进而有:
0 ≤ ∣ I n − sin ⁡ ( a ) ∣ = ∣ ∫ 0 1 sin ⁡ ( a + x n ) − sin ⁡ ( a ) d x ∣ ≤ ∫ 0 1 ∣ sin ⁡ ( a + x n ) − sin ⁡ ( a ) ∣ d x = ∫ 0 1 ∣ cos ⁡ ( a + ξ ) ∣ d x ≤ ∫ 0 1 ∣ cos ⁡ ( a + x n ) ∣ d x . 0\le|I_{n}-\sin(a)|=|\int_{0}^{1}\sin(a+x^{n})-\sin(a)dx|\le\int_{0}^{1}|\sin(a+x^{n})-\sin(a)|dx=\int_{0}^{1}|\cos(a+\xi)|dx\le\int_{0}^{1}|\cos(a+x^{n})|dx. 0Insina)=01sin(a+xn)sin(a)dx01sin(a+xn)sin(a)dx=01cos(a+ξ)dx01cos(a+xn)dx.
最后由夹逼定理:
0 ≤ [ I n − sin ⁡ ( a ) ] ≤ 0 求 得 。 0\le[I_{n}-\sin(a)]\le0求得。 0[Insin(a)]0
在这里插入图片描述
分析:该题是二元微分变参数问题。变换参数问题通常有一变一,一变多、多变一、多变多几种。基本思路是:
1.确定变量之间的关系式。
2.对原变量函数进行微积分。
3.变量代换求解。

简答:
∂ z ∂ x = f ′ ∗ ( − y x 2 ) ; ∂ 2 z ∂ x 2 = f ′ ′ ∗ ( y 2 x 4 ) + f ′ ∗ ( 2 y x 3 ) . \frac{\partial z}{\partial x}=f' *(-\frac{y}{x^2});\quad\frac{\partial ^{2}z}{\partial x^{2}}=f''*(\frac{y^{2}}{x^4})+f'*(\frac{2y}{x^3}). xz=f(x2y);x22z=f(x4y2)+f(x32y).

∂ z ∂ y = f ′ ∗ ( 1 x ) ; ∂ 2 z ∂ y 2 = f ′ ′ ∗ ( 1 x 2 ) \frac{\partial z}{\partial y}=f' *(\frac{1}{x});\quad\frac{\partial ^{2}z}{\partial y^{2}}=f''*(\frac{1}{x^{2}}) yz=f(x1);y22z=f(x21)

∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = 0 = f ′ ′ ∗ ( y 2 + x 2 x 4 ) + f ′ ∗ ( 2 y x 3 ) x > 0. \frac{\partial ^{2}z}{\partial x^{2}}+\frac{\partial ^{2}z}{\partial y^{2}}=0=f''*(\frac{y^{2}+x^{2}}{x^{4}})+f'*(\frac{2y}{x^3}) \quad x>0. x22z+y22z=0=f(x4y2+x2)+f(x32y)x>0.

u = y x f ′ ′ ∗ ( 1 + u 2 ) + f ′ ( 2 u ) = 0. 全 微 分 求 解 即 可 。 u=\frac{y}{x} \quad f''*(1+u^{2})+f'(2u)=0. 全微分求解即可。 u=xyf(1+u2)+f(2u)=0.
在这里插入图片描述
在这里插入图片描述
分析:积分的物理应用问题,第一问答案为 8 π 8 \pi 8π.
第二问由两个解法:
错解: 显 然 v y = v ( t ) , 只 要 确 定 一 个 仅 含 有 v , t 的 方 程 , 又 由 V = t 将 y = 1 时 的 t 求 出 即 可 。 显然v_{y}=v(t),只要确定一个仅含有v,t的方程,又由V=t将y=1时的t求出即可。 vy=v(t),vtV=ty=1t

简答: V = π ∫ 0 1 y d y = π 2 , 又 V = t = π ∫ 0 v t ( y ) 2 d y = π 2 y 2 ∣ 0 v t ; V=\pi \int_{0}^{1}ydy=\frac{\pi}{2},又V=t=\pi \int_{0}^{v t}(\sqrt y)^{2}dy=\frac{\pi}{2} y^{2}|_{0}^{vt}; V=π01ydy=2π,V=t=π0vt(y )2dy=2πy20vt;
2 π = v 2 ∗ t ; 又 当 y = 1 时 t = π 2 ; 得 v = 2 π . \quad\quad\frac{2}{\pi}=v^2*t;又当y=1时t=\frac{\pi}{2};得v=\frac{2}{\pi}. π2=v2ty=1t=2π;v=π2.

错误原因:由题可知液面上升速率就是 y ′ y' y,即 y ′ = v y'=v y=v;但我仅考虑了 v v v会随 t , y t,y ty变化而变化。实际上v应该是一个独立于t的变量,应该设 ∂ y ∂ t = v . ( 或 者 v 本 身 就 是 常 数 ) 。 \frac{\partial y}{\partial t}=v.(或者v本身就是常数)。 ty=v.(v

正解: 由 题 可 知 , 体 积 增 长 速 率 为 d V d t = 1 , 又 V = π ∗ ∫ 0 v t y d y ; 同 时 对 t 求 导 有 : 由题可知,体积增长速率为\frac{dV}{dt}=1,又V=\pi*\int_{0}^{vt}ydy;同时对t求导有: dtdV=1,V=π0vtydy;t
1 = π ( v t ) ( v t ) ′ , y = v t = 1 1=\pi (vt)(vt)',\quad y=vt=1 1=π(vt)(vt),y=vt=1
又 y = 1 , 所 以 y ′ = v = 1 π . 又y=1,所以y'=v=\frac{1}{\pi}. y=1,y=v=π1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值