很多事情,我们都是靠直觉在解决,生活、工作都是如此。如果你给你的直觉打分(0-100),你觉得你能打到几分?
现在我们先来看两个概率问题,考验概率的直觉准确性:
Q1:一个家庭,有两个孩子,求这两个孩子同为女孩的概率p1
Q2:一个家庭,有两个孩子,已知那个大孩子是女孩,求小孩子是女孩的概率p2
相信大家一秒内就能给出答案:p1=0.5*0.5=0.25,p2=0.5
再给大家一个问题:
看似与Q1,Q2一致,都是同一类问题,所以根据常识,生男生女概率都为0.5,所以这道题的答案是0.5。如果是这样子,那就真的大错特错了。
“???这不很明显吗?剩下的那个小孩,不是男的,就是女的,难道还有别的?(此处信息量巨大,不再拓展)?难道现在生男生女概率还不同了?”——这也许是很多人在得知问题解决错误后的第一想法。
那我们不妨对这个问题进行一一列举。首先,我们把这个样本理清,2个孩子,可以是两个男孩,两个女孩,或者是一男一女。请注意,这里的男女,总共是各有两个,且互异,我们不妨记为M1,M2,F1,F2(F-female,M-male)。从Q1、Q2,我们可以得到一个关键词——“较大的那个女孩”。那么,在这个Q3,如果我们假设,两个孩子被认识有一种先后顺序,那么,这个被认识的女孩,可能是F1,也可能是F2。所以在认识完第一个女孩子之后,后边都各有三种组合。
以下这种解决方案是本人的做法:
将认识的顺序,映射为(x,y)\in R^{2}
则有:(