拓扑结构
如下图所示为主电路拓扑,其中us、is为网侧电压、电流;Ls、Rs为网侧等效电感、电阻,uab为整流器输入电压端调制电压;S1、S2、S3、S4 分别表示 4 个带有 VD1、 VD2、VD3、VD4的IGBT开关模块,Cd为输出滤波电感,udc、iL为输出电压、电流;RL为负载电阻;

工作模式
为了方便研究,定义开关函数Sa、Sb为

不允许上下桥臂同时导通或者关闭。由此可以看出,一共有四种工作方式,分别是SaSb=00、01、10、11,分别对应四种工作状态。具体如下图所示
设定网侧电流在每种工作状态下,正方向由左向右。由于Rs<<Ls,所以将Rs忽略不计。

根据单相pwm整流器开关的四中开关状态,工作模式(us>0)可以分为以下三种
SaSb=00、11
如图(a)、(d)所示,此时整流桥的上桥臂或者下桥臂全部导通,此时uab=0。直流侧电容Cd向负载放电,udc下降,该过程较短,维持负载电压相对恒定。同时,网侧电源us和网侧电感Ls直接构成闭合回路,若us>0,is>0,网侧电源直接向电感充电,电流is幅值逐渐增大。若us>0,is<0,则网侧电感Ls向交流电源回馈能量,电流is幅值逐渐减小。
经过以上分析,可以得到这种状态下的电压平衡方程

SaSb=01
如图(b)所示,此时a桥臂下管和b桥臂下管导通,uab=-udc。若us>0,is>0时,S2、S3导通,交流电源us和直流侧电容Cd通过is向电感Ls充电储能,网测电流is增大,直流侧电压udc降低。若us>0,is<0,VD2、VD3导通,网侧电感Ls通过is向直流侧电容Cd和交流电源us反馈能量,网测电流is减小,直流测电压udc上升。
经过以上分析,可以得到这种状态下的电压平衡方程

SaSb=10
如图(c)所示,此时a桥臂上管和b桥臂下管导通,uab=udc。若us>0,is>0,VD1和VD4导通,网侧电感Ls和网侧电源us向直流侧电容Cd充电,网测电流is幅值降低,直流测电压udc升高;当us>0,is<0时,S1和S4导通,直流测电容Cd和网侧电源us通过网测电流is向网侧电感Ls充电,网测电流幅值减小,直流测电压udc升高。
经过以上分析,可以得到这种状态下的电压平衡方程

在实际的工作过程中,通过对以上三种工作模式的选择,控制开关通断,实现能量的双向流动和输出电压稳定。
交流侧向量图

在上图中,vs、vL、vab分别表示网侧电压、网侧电感电压、整流器输入端电压。这个向量图的特点是vs保持不变,相角恒定,vL幅值不变,终点和vs重合,以vL为半径可绘制一圆形,此时vab的重点必须在圆上,即与vL的起点重合。
可以看到,当vL的起点改变时,整流器的外特性也在发生变化。例如vL的起点在A点时,向量vab、vL、vs同向,网测电流is与vs相差90度,整流器表现为纯电感特性。
主电路数学模型
根据单相pwm整流器的主电路拓扑,由Kirchhoff电压、电流定律可得

uab和udc满足以下关系式

将开关函数带入第一个方程组可得

由上式可知,通过控制开关器件的开关状态,可以使系统工作在整流、逆变、产生无功、功率因数可调的状态下。采用合适的调制策略对输入电压、电流进行控制,从而得到期望的控制效果。
dq参考系数学模型
dq坐标变换是一种在三相系统中很常见的解耦控制方法,目的是将交流量转化为直流量,具体操作是将三相参考系转换为等效的二相旋转参考系,再转换成正交的静止参 考系。该变换的优势是很容易实现基波与谐波的分离,有利于消除谐波与不对称电压的 影响。但是对于单相整流系统由于只有一相无法直接进行变换,所以需要额外构建与其正交的一相来应用 dq 坐标变换,

在真实的单相系统中,将交流量分别延迟 90°后获得虚拟的正交分量,则有
α-β 坐标系到 d-q 坐标系的 d-q 变换:

d-q 坐标系到 α-β 坐标系的 d-q 反变换:

经过dq变化后可以得到以下电压、电流表达式

得到单相 PWM 整流器在两相旋转 dq 参考系的数学模型,为控制策略 的应用夯实基础。