单相PWM整流器在旋转坐标系下的数学模型分析

单相PWM整流器在旋转坐标系下的数学模型分析

1、单相PWM整流器常规KVL模型

在这里插入图片描述
  根据基尔霍夫电压定律(KVL)得:
L s d i s ( t ) d t = u s ( t ) − R i s ( t ) − u a b ( t ) (1) L_s\frac{di_s(t)}{dt}=u_s(t)-Ri_s(t)-u_{ab}(t) \tag{1} Lsdtdis(t)=us(t)Ris(t)uab(t)(1)
  其中 u s u_s us为网侧电压, i s i_s is为网侧电流, u a b u_{ab} uab为整流器侧输出电压, L s L_s Ls为网侧滤波电感, R R R为回路寄生电阻, T 1 ∼ T 4 T_1\sim T_4 T1T4为开关管, u d c u_{dc} udc为直流母线电压, C C C为输出滤波电容, i L i_L iL为负载电流, R L R_L RL为直流负载,以整流方向为正(如上图)。

2、旋转坐标系的原理

在这里插入图片描述
  设置单相正弦量 x ( t ) x(t) x(t)将其分解得:
x ( t ) = X m c o s ( w 0 t − φ ) = X m c o s ( φ ) c o s ( w 0 t ) + X m s i n ( φ ) s i n ( w 0 t ) (2) x(t)=X_mcos(w_0t-\varphi)=X_mcos(\varphi) cos(w_0t)+X_msin(\varphi)sin(w_0t) \tag{2} x(t)=Xmcos(w0tφ)=Xmcos(φ)cos(w0t)+Xmsin(φ)sin(w0t)(2)
  令 X d = X m c o s ( φ ) 、 X q = X m s i n ( φ ) X_d=X_mcos(\varphi)、X_q=X_msin(\varphi) Xd=Xmcos(φ)Xq=Xmsin(φ)得:
x ( t ) = X d c o s ( w o t ) + X q s i n ( w 0 t ) (3) x(t)=X_dcos(w_ot)+X_qsin(w_0t)\tag{3} x(t)=Xdcos(wot)+Xqsin(w0t)(3)
  将 X d X_d Xd X q X_q Xq视作d-q坐标系中的直流量,若将d-q旋转坐标系的旋转角频率 θ = w 0 t \theta =w_0t θ=w0t,通过I-Park变换可得到对应静止坐标系 α − β \alpha- \beta αβ α 和 β \alpha和\beta αβ正交, β \beta β代表虚拟量)。由 x ( t ) = X d c o s ( w 0 t ) + X q s i n ( w 0 t ) x(t)=X_dcos(w_0t)+X_qsin(w_0t) x(t)=Xdcos(w0t)+Xqsin(w0t)可知,若果可以找到与网侧电流正交的虚拟电流向量,便可构成虚拟的两相静止坐标系,进而利用Park变换将网侧电流等效为旋转坐标系下的直流量,从而通过设计适当PI调节器可以获得稳态网侧电流无静差的控制效果。
  对于上图理解:在 α − β \alpha-\beta αβ坐标系中,以 U s U_s Us信号作为参考,此时电流信号 I s I_s Is与其有夹角 φ \varphi φ,即此时电压电流不同相,但是最终目标是使得电压、电流同相,而此时对于在静态坐标系下不好处理电压、电流的关系,那么以电压 U s U_s Us为参考构建d-q坐标系,此时电流在d-q坐标系的分量分别为 I s d = I s c o s ( φ ) I_{sd}=I_scos(\varphi) Isd=Iscos(φ) I s q = I s s i n φ I_{sq}=I_ssin{\varphi} Isq=Issinφ,当电压和电流同相时 φ = 0 \varphi=0 φ=0,有功功率最大,无功功率最小。
  结合前面分析,简单理解为d-q坐标系的引入便分别将有功功率和无功功率绑定在d轴和q轴分量的变化上了。

3、旋转坐标系中的数学模型

  通过将实际网侧电流延迟1/4周期得到虚拟电流向量构造与 α \alpha α轴正交的 β \beta β虚拟分量,那么设:
i α = i s ( t ) = I m c o s ( w 0 t ) i β ( t ) = I m c o s ( w 0 t − π 2 ) = I m s i n ( w 0 t ) (4) i_\alpha=i_s(t)=I_mcos(w_0t)\\ i_\beta(t)=I_mcos(w_0t-\frac{\pi}{2})=I_msin(w_0t)\tag{4} iα=is(t)=Imcos(w0t)iβ(t)=Imcos(w0t2π)=Imsin(w0t)(4)
  选取电网电压 u s u_s us作为参考向量,根据Park变换矩阵,将**(4)式**代入其中,即:
Park变换矩阵
[ d q ] = [ c o s θ s i n θ − s i n θ c o s θ ] [ α β ] (5) \left[ \begin{matrix} d\\ q\\ \end{matrix} \right]= \left[ \begin{matrix} cos\theta&sin\theta\\ -sin\theta&cos\theta\\ \end{matrix} \right] \left[ \begin{matrix} \alpha\\ \beta\\ \end{matrix} \right]\tag{5} [dq]=[cosθsinθsinθcosθ][αβ](5)
   θ = w 0 t \theta=w_0t θ=w0t得:
i s d ( t ) = i α ( t ) c o s ( w o t ) + i β ( t ) s i n ( w 0 t ) i s q ( t ) = − i β ( t ) s i n ( w 0 t ) + i β ( t ) c o s ( w 0 t ) (6) i_{sd}(t)=i_{\alpha}(t)cos(w_ot)+i_{\beta}(t)sin(w_0t)\\ i_{sq}(t)=-i_{\beta}(t)sin(w_0t)+i_{\beta}(t)cos(w_0t)\tag{6} isd(t)=iα(t)cos(wot)+iβ(t)sin(w0t)isq(t)=iβ(t)sin(w0t)+iβ(t)cos(w0t)(6)
  将(4)式代入(5)式得:
i s d ( t ) = I m i s q ( t ) = 0 (7) i_{sd}(t)=I_m\\ i_{sq}(t)=0\tag{7} isd(t)=Imisq(t)=0(7)
  其中 i d 、 i q i_d、i_q idiq分别为输入电流有功分量和无功分量的参考值。
  将相关变量代3式中得到相应的d轴和q轴的分量关系式:
i s ( t ) = i s d ( t ) c o s ( w 0 t ) + i s q ( t ) s i n ( w 0 t ) u s ( t ) = u s d ( t ) c o s ( w 0 t ) + i s q ( t ) s i n ( w 0 t ) u a b ( t ) = u a b d ( t ) c o s ( w 0 t ) + u a b q ( t ) s i n ( w 0 t ) L d i s ( t ) d t = L d i s d ( t ) d t c o s ( w 0 t ) + L d i s q ( t ) d t s i n ( w 0 t ) − w L i s d ( t ) s i n ( w 0 t ) + w L i s q ( t ) c o s ( w 0 t ) (8) i_s(t)=i_{sd}(t)cos(w_0t)+i_{sq}(t)sin(w_0t)\\ u_s(t)=u_{sd}(t)cos(w_0t)+i_{sq}(t)sin(w_0t)\\ u_{ab}(t)=u_{abd}(t)cos(w_0t)+u_{abq}(t)sin(w_0t)\\ L\frac{di_s(t)}{dt}=L\frac{di_{sd}(t)}{dt}cos(w_0t)+L\frac{di_{sq}(t)}{dt}sin(w_0t)-wLi_{sd}(t)sin(w_0t)+wLi_{sq}(t)cos(w_0t)\tag{8} is(t)=isd(t)cos(w0t)+isq(t)sin(w0t)us(t)=usd(t)cos(w0t)+isq(t)sin(w0t)uab(t)=uabd(t)cos(w0t)+uabq(t)sin(w0t)Ldtdis(t)=Ldtdisd(t)cos(w0t)+Ldtdisq(t)sin(w0t)wLisd(t)sin(w0t)+wLisq(t)cos(w0t)(8)
  根据(1)式得各分量于d轴和q轴表达式:
L d i s d ( t ) d t + R i s d ( t ) = u s d ( t ) − w L i s q ( t ) − u a b d ( t ) L d i s q ( t ) d t + R i s q ( t ) = u s q ( t ) + w L i s q ( t ) − u a b q ( t ) (9) L\frac{di_{sd}(t)}{dt}+Ri_{sd}(t)=u_{sd}(t)-wLi_{sq}(t)-u_{abd}(t)\\ L\frac{di_{sq}(t)}{dt}+Ri_{sq}(t)=u_{sq}(t)+wLi_{sq}(t)-u_{abq}(t)\tag{9} Ldtdisd(t)+Risd(t)=usd(t)wLisq(t)uabd(t)Ldtdisq(t)+Risq(t)=usq(t)+wLisq(t)uabq(t)(9)
  进行移相处理得 U a b d 和 U a b q 表达式 U_{abd}和U_{abq}表达式 UabdUabq表达式
u a b d ( t ) = u s d ( t ) − w L i s q ( t ) − L d i s d ( t ) d t − R i s d ( t ) u a b q ( t ) = u s q ( t ) + w L i s d ( t ) − L d i s q ( t ) d t − R i s q ( t ) (10) u_{abd}(t)=u_{sd}(t)-wLi_{sq}(t)-L\frac{di_{sd}(t)}{dt}-Ri_{sd}(t)\\ u_{abq}(t)=u_{sq}(t)+wLi_{sd}(t)-L\frac{di_{sq}(t)}{dt}-Ri_{sq}(t)\tag{10} uabd(t)=usd(t)wLisq(t)Ldtdisd(t)Risd(t)uabq(t)=usq(t)+wLisd(t)Ldtdisq(t)Risq(t)(10)
  对(9)式进行拉普拉斯变换,得:
( R + s L ) i s d ( s ) = − u a b d ( s ) + u s d ( s ) − w L i s q ( s ) ( R + s L ) i s q ( s ) = − u a b q ( s ) + u s q ( s ) + w L i s d ( s ) (11) (R+sL)i_{sd}(s)=-u_{abd}(s)+u_{sd}(s)-wLi_{sq}(s)\\ (R+sL)i_{sq}(s)=-u_{abq}(s)+u_{sq}(s)+wLi_{sd}(s)\tag{11} (R+sL)isd(s)=uabd(s)+usd(s)wLisq(s)(R+sL)isq(s)=uabq(s)+usq(s)+wLisd(s)(11)
  根据(11)式绘制控制框图,如下图所示:
在这里插入图片描述
  根据表达式(框图)均可易知,d轴和q轴存在耦合,在调节 i s d ( t ) i_{sd}(t) isd(t)时, i s q ( t ) i_{sq}(t) isq(t)对其也产生作用,这也是稳态时网侧电流存在静差的原因。当其存在耦合,那么解耦便是必然的,通过同步旋转坐标变换将网侧电流解耦为d轴电流和q轴电流,采用PI控制器分别进行控制,实现无静差控制的多重非线性约束,从而获得良好的稳态性能。

4、电流解耦双闭环控制策略

  解耦的目标是为了实现d轴电流仅受电压控制,和q轴电压无关,即d轴电流和q轴电流实现独立控制。
  使用一个通过的做法是定义一组新的变量,将式(11)的右侧打包。
U d f ( s ) = − u a b d ( s ) + u s d ( s ) − w L i s q ( s ) U q f ( s ) = − u a b q ( s ) + u s q ( s ) + w L i s d ( s ) (12) U_{df}(s)=-u_{abd}(s)+u_{sd}(s)-wLi_{sq}(s)\\ U_{qf}(s)=-u_{abq}(s)+u_{sq}(s)+wLi_{sd}(s)\tag{12} Udf(s)=uabd(s)+usd(s)wLisq(s)Uqf(s)=uabq(s)+usq(s)+wLisd(s)(12)
则:
( R + s L ) i s d ( s ) = U d f ( s ) ( R + s L ) i s q ( s ) = U q f ( s ) (13) (R+sL)i_{sd}(s)=U_{df}(s)\\ (R+sL)i_{sq}(s)=U_{qf}(s)\tag{13} (R+sL)isd(s)=Udf(s)(R+sL)isq(s)=Uqf(s)(13)
  根据上式绘制传递函数框图:
在这里插入图片描述当然解耦不是这么  简单就完了,因为只是简单的变量替换是无法完成解耦的,还要分别对 U d f ( s ) U_{df}(s) Udf(s) U q f ( s ) U_{qf}(s) Uqf(s)进行构造,即:
U d f ( s ) = [ i d r e f ( s ) − i d ( s ) ] ( K p d + K i d s ) U q f ( s ) = [ i q r e f ( s ) − i q ( s ) ] ( K p q + K i q s ) (14) U_{df}(s)=[i_{dref}(s)-i_d(s)](Kp_{d}+\frac{Ki_d}{s})\\ U_{qf}(s)=[i_{qref}(s)-i_q(s)](Kp_{q}+\frac{Ki_q}{s})\tag{14} Udf(s)=[idref(s)id(s)](Kpd+sKid)Uqf(s)=[iqref(s)iq(s)](Kpq+sKiq)(14)
  根据(13、14)式绘制传递函数框图:
在这里插入图片描述
  对于d轴分量,在知道实际电流和参考电流的情况下通过PI控制器得到 U d f ( s ) U_{df}(s) Udf(s),而 i s d ( s ) i_{sd}(s) isd(s)受控于 U d f ( s ) U_{df}(s) Udf(s),如此一来便形成了一个经典的闭环控制,q轴同样类似。所以通过这样的处理的确可以实现将d轴和q轴分开控制。
根据(12~14)式得:
u a b d ( s ) = u s d ( s ) − w L i s q ( s ) − [ i d r e f ( s ) − i d ( s ) ] ( K p d + K i d s ) u a b q ( s ) = u s q ( s ) + w L i s d ( s ) − [ i q r e f ( s ) − i q ( s ) ] ( K p q + K i q s ) (15) u_{abd}(s)=u_{sd}(s)-wLi_{sq}(s)-[i_{dref}(s)-i_d(s)](Kp_{d}+\frac{Ki_d}{s})\\ u_{abq}(s)=u_{sq}(s)+wLi_{sd}(s)-[i_{qref}(s)-i_q(s)](Kp_{q}+\frac{Ki_q}{s})\tag{15} uabd(s)=usd(s)wLisq(s)[idref(s)id(s)](Kpd+sKid)uabq(s)=usq(s)+wLisd(s)[iqref(s)iq(s)](Kpq+sKiq)(15)
  由(15)式绘制解耦控制框图,如下所示:
电流环解耦控制器框图
  虽然看起来很复杂,但是从框图上不难看出d-q轴的控制逻辑是完全独立的,不会因为要控制其中的某一个对象而影响另外一个对象。

5、高频信号完整控制框图

在这里插入图片描述
  上图为高频信号完整控制框图。在本文中默认 θ \theta θ是已知的,实则需要通过其他控制模型获取。

5、总结

1、单相PWM整流(逆变)控制模型在构建同步旋转坐标系(d-q坐标系)时需要引进虚拟量与实际信号正交,在本文中使用的是延迟1/4周期法;
2、通过给引入PI控制实现对耦合项解耦,即:构造的PI项=打包的部分。
注意:耦合项框图与控制信号链路无关,可理解物理电路的实际信号链路。而电流解耦控制器的输出 u a b d u_{abd} uabd u a b q u_{abq} uabq才是要作用到电路上去的控制信号。

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值