万万没想到,Mac变成AI PC,原来就差了一个豆包电脑版。
例如想要在B站上学习科技新进展,现在的打开方式是这样的——在豆包电脑版里,用AI看视频:
将近15分钟的视频,“啪的一下”,各种重点内容全部给你总结好了:
当然,AI大模型的“基本功”也是具备的,你可以边看视频边提问(哪里不会问哪里):
如此一来,在B站学习知识这件事,效率可以说是一下子Pro Max了。
除此之外,之前类似Mac里非常单一的搜索功能(Command+空格),在安了豆包电脑版之后也直接**“变废为宝”**。
只需按下快捷键**“Option+空格”**,类似的搜索界面,却是截然不同的打开方式。
除了基本的搜索、提问功能之外,可以直接把它当做一个AI翻译软件:
还有超多的实用功能,比如扩写、语法修正、逐行代码解释、代码纠错、优化提示词等等:
不得不说,光这两个功能的加持,一下子让Mac有了AI的味道。
AI PC的重要性可以说是不言而喻了,可以提供前所未有的计算能力和效率,让各种AI应用在本地运行。
虽然豆包电脑版还不能做到断网运行,但起码算是给Mac注入了不少的AI Power。
但有一说一,上述的功能还仅仅是豆包电脑版AI实力的一隅。
快把Chrome弃掉了
在使用PC的过程中,浏览器定然最为常用的软件之一。
而我们现在做搜索的过程中,往往会面临在茫茫选项中需要筛选的问题(还有夹带的广告)。
例如我们输入“斐波那契数列”,得到的搜索结果是这样的:
但同样的问题丢给豆包电脑版,那么输出结果就会非常直截了当。
从公式、性质、特点,到应用和研究历史,可以说是非常的一目了然。
而当我们想要基于“斐波那契数列”这个话题进行更深入的了解,传统搜索的方法就是“另起炉灶”,新开一页再搜索。
然后再重复在茫茫选项中筛选的这个过程。
但在豆包电脑版里,直接一键**“深入搜索”**,完事儿:
“深入搜索”会根据更多的信源,来对问题进行更加全面和深度的总结。
从这次给出的结果来看,豆包是对斐波那契数列的证明,以及更多在现实场景中的应用做了详解。
而且更方便的一点是,豆包电脑版是真做到了**“不懂哪里点哪里”**。
内嵌的划词功能,可以说是所到之处皆可AI搜索:
划词里的功能还是可以自定义的那种,功能之多,来感受一下这个feel:
所以不难看出,在某些内容搜索结果呈现和便捷性方面,是豆包电脑版>浏览器。
还是办公、学习神器
除了“搜”的能力之外,豆包电脑版在“读”、“写”、“画”方面也是一把好手。
例如对于科研党和办公党来说,豆包电脑版可以是一个读文件神器。
只需一个动作——把文件丢进去:
以为只是简单的AI文档分析?No,No,No。
在豆包解读完文档之后,在回答的下方会有一个AI伴读的按钮:
由此,你将体验到与此前在电脑上读文档完全不同的感觉,很AI,很智能的那种。
首先,AI伴读可以在极快的时间里将英文的文档全文翻译成中文,而且可以对照着做展示。
若是将鼠标悬停在某个段落上,豆包会自动选中内容,并提供AI搜索、解释、翻译和复制的功能。
当然,刚才提到的划词功能,AI伴读模式下也是有的哦~
AI伴读和AI搜索一样,也算是把“不会哪里点哪里”玩明白了。
接下来,在**“写”这一块,豆包电脑版是真的有在努力试图解放打工人的双手**。
瞧,各个赛道、各个可能用得上的场景、各式各样的风格,它都给你罗列出来了:
从论文、研究报告、总结汇报,到小红书、朋友圈、微博,再到邮件、日报、大纲……工作、生活中能用上的基本上都cover住了。
例如我们需要一张医疗文章的配图,那么就可以直接一个prompt给过去:
帮我生成图片:图片风格为「人像摄影」,医生坐在办公室桌子前进行记录,插图,写实,摄影,高清,8K,完美构图,极其精致的细节,避免文字,亚洲人,写实。
当然,使用习惯是一个循序渐进的过程,若你还是用惯了浏览器办公,没关系,上述的很多功能豆包已经打包到插件里了!
用AI看视频,这个可以有:
网页AI搜索,可以有:
AI总结网页内容,还是可以有:
总而言之,有了豆包,现在用PC是真的香。
让大模型用起来,豆包是认真的
其实纵观今年大模型的发展,有一条发展线路越发的清晰明了——
各个大模型玩家除了在比拼自身实力之外,在玩法上的创意也层出不穷。
究其原因,也是非常简单,正是因为现在已经到了应用为王的节点,能把大模型用起来才是真正的硬道理。
这也就是此前各个大模型玩家展开激烈的价格战的原因之一。
而以豆包为例,从我们刚才展示的各个案例中不难发现,AI应用不仅已经聚焦到了生活、学习、办公等各个大场景,更是深入到了非常细节的小功能。
读论文、写微博文案、日报、邮件、划词、AI搜索、翻译、解释、画海报……比比皆是。
那么具体用得如何了?这一点,市场的反馈或许就是较为真实的写照。
总而言之,谁能在大模型时代拿下更多的用户,谁才能笑到最后。
而豆包,绝对属于值得长期关注的玩家之一。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。