微软开源,CPU推理100B模型,速度飞起~

微软最新开源框架,bitnet.cpp,致力于在CPU上对超大尺寸模型的推理,不仅能跑,还能达到人工阅读的速度(每秒5~7个token)!

bitnet.cpp 是 1bit LLMs(如 BitNet b1.58)的官方推理框架。它提供了一套优化的内核,支持在 CPU 上对 1.58 bit模型进行快速无损的推理(接下来将支持 NPU 和 GPU)。

目前,在 x86 CPU 上,加速范围为 2.37 倍到 6.17 倍,能耗降低在 71.9% 到 82.2% 之间。

bitnet.cpp 可以在单个 CPU 上运行 100B BitNet b1.58 模型,达到与人阅读相当的速度(每秒 5-7 个token),显着增强了在本地设备上运行 LLMs。

项目地址:https://github.com/microsoft/BitNet

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 回答1: ATC100B电容是一种陶瓷介质多层片式电容器。它具有体积小、重量轻、耐振动、抗高温等特点,被广泛应用于各种电子设备中。 ATC100B电容的ADS模型是一种用于仿真和设计电子电路的模型。ADS模型提供了ATC100B电容在电路中的行为特性,例如电容值、频率响应和损耗等。通过利用ADS模型,设计师可以更好地理解和分析电容器在电路中的影响,并根据需要进行优化和调整。 ADS模型还可以用于快速评估和验证设计方案,以及进行电路性能分析。在电子器件设计过程中,ADS模型能够提供准确的仿真结果,帮助设计师节省时间和成本。 总之,ATC100B电容的ADS模型是一种有助于电子电路设计和分析的工具。它能够提供电容器的行为特性,并帮助设计师更好地评估和优化电路性能。 ### 回答2: ATC100B电容是一种多层陶瓷电容器,在电子电路中用于存储和传输电荷,具有高频带宽、低损耗、高稳定性等特点。ADS模型是一种电路仿真软件,用于设计、分析和优化电路。 ATC100B电容的ADS模型基于该电容的特性参数,通过数学模型将其电性能转化为电路模型,以方便在ADS软件中进行电路仿真。ADS模型包含了电容的参数和连接方式,可以帮助工程师在电路设计过程中更准确地预测和优化电路性能。 ATC100B电容的ADS模型可以用于各类电路仿真,如滤波器、放大器、振荡器等。通过在ADS软件中建立电路模型并进行仿真,可以评估电容在电路中的性能表现,包括功耗、频率响应、噪声等。 在使用ATC100B电容的ADS模型时,需要准确设置电容的参数,包括电容值、电压容限、频率特性等。通过调整这些参数,可以验证电容在不同工作条件下的性能,并根据需要进行优化。 总之,ATC100B电容的ADS模型是一种方便而实用的电路仿真工具,可以帮助工程师更好地设计和优化电路。它提供了一种便捷而准确的方法,使得电路设计过程更加高效和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值