Ollama对比Nexa,本地高效部署大模型

掌握Ollama和Nexa AI的安装与使用,让本地运行AI模型变得轻松。

掌握如何在本地机器上安装和使用Ollama与Nexa AI,这两个平台将帮助开发者能够轻松运行和管理AI模型。本文分享安装和基本使用方法。

1 Ollama

在Linux机器上下载并安装Ollama,可以使用下面的命令一键安装:

curl -fsSL https://ollama.com/install.sh | sh   

对于MacOS和Windows,请访问Ollama下载页面链接(https://ollama.com/download)获取相应的安装包。

安装完成后,在终端输入ollama命令,如果安装成功,你会看到命令行输出的相关提示。

Ollama允许你从模型中心拉取所需的模型,并在本地运行。在运行模型前,请确保你的硬件配置满足模型的运行要求。使用以下命令运行模型:

ollama run <model-name>   

如果想在浏览器中使用模型,可以拉取模型镜像后,使用serve命令启动Ollama的本地Web服务器:

本地服务器启动后,可以通过Python脚本或Postman调用API,获取模型的响应数据。更多关于如何使用Web服务器的示例,可以参考Ollama官方博客(https://ollama.com/blog/llama3.2-vision)。

2 Nexa AI

Nexa AI与Ollama大致相似(二者为各种用例提供了工具),但其中心枢纽拥有更丰富的模型资源,包括大型和小型语言模型,以及图像、音频和视频生成模型。

你可以使用这个链接下载Nexa SDK:https://nexa.ai/download-sdk。

对于Linux用户,可以通过执行以下命令快速安装SDK:

curl -fsSL https://public-storage.nexa4ai.com/install.sh | sh   

对于其他操作系统的用户,可以直接从上述链接下载对应的安装文件。此外,Nexa SDK也支持通过Python的pip安装器进行安装。

安装完成后,可以通过在终端输入nexa命令来验证SDK是否安装成功。如果安装无误,终端会显示预期的输出结果。

如果从Nexa中心枢纽拉取了模型到本地机器,那么可以使用命令nexa list进行验证,会显示类似下面的内容。

如果模型镜像尚未拉取,那么可以使用命令nexa pull <model-name>或者run命令来拉取omnivision模型(一个小型视觉语言模型)。除了run命令,还有一个-st标志,你可以使用它来启动Streamlit服务器,通过浏览器的UI使用模型。

Nexa UI与Streamlit

和Ollama一样,你可以使用下面的命令从你的本地移除任何你不想要的模型:

nexa remove <model-name>   

Nexa AI和Ollama都提供了丰富的模型中心,你可以尝试运行不同的模型,体验在本地机器上运行生成性AI模型的便捷性。通过实践,你会发现在本地部署和测试AI模型是一件非常简单的事情。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值