直观易用的大模型开发框架LangChain,你会了没?

Tech

目录

  • 简介

  • 基本组件

  • 小试牛刀

  • 关于沟通

  • 代码案例:调用Embedding、Completion、Chat Model

  • 总结

目前LangChain框架在集团大模型接入手册中的学习案例有限,为了让大家可以快速系统地了解LangChain大模型框架并开发,产出此文章。本文章包含了LangChain的简介、基本组件和可跑的代码案例(包含Embedding、Completion、Chat三种功能模型声明)。

01

简介

在今年的敏捷团队建设中,我通过Suite执行器实现了一键自动化单元测试。Juint除了Suite执行器还有哪些执行器呢?由此我的Runner探索之旅开始了!

LangChain 作为一个大语言模型(LLM)集成框架,旨在简化使用大语言模型的开发过程,包括如下组件:

LangChain框架优点:

1.多模型支持: LangChain 支持多种流行的预训练语言模型,如 OpenAI GPT-3、Hugging Face Transformers 等,为用户提供了广泛的选择。

2.易于集成: LangChain 提供了简单直观的API,可以轻松集成到现有的项目和工作流中,无需深入了解底层模型细节。

3.强大的工具和组件: LangChain 内置了多种工具和组件,如文档加载器、文本转换器、提示词模板等,帮助开发者处理复杂的语言任务。

4.可扩展性: LangChain 允许开发者通过自定义工具和组件来扩展框架的功能,以适应特定的应用需求。

5.性能优化: LangChain 考虑了性能优化,支持高效地处理大量数据和请求,适合构建高性能的语言处理应用。

6.Python 和 Node.js 支持: 开发者可以使用这两种流行的编程语言来构建和部署LangChain应用程序。

由于支持 Node.js ,前端大佬们可使用Javascript语言编程从而快速利用大模型能力,无需了解底层大模型细节。同时也支持JAVA开发,后端大佬同样适用。

本篇文章案例聚焦Python语言开发。

02

基本组件

理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。

  • Prompt【可选】

  • 告知LLM内system服从什么角色

  • 占位符:设置{input}以便动态填补后续用户输入

  • Retriever【可选】

  • LangChain一大常见应用场景就是RAG(Retrieval-Augmented Generation),RAG 为了解决LLM中语料的通用和时间问题,通过增加最新的或者垂类场景下的外部语料,Embedding化后存入向量数据库,然后模型从外部语料中寻找相似语料辅助回复

  • Models

  • 可做 Embedding化,语句补全,对话等

支持的模型选择,OpenAI为例

  • Parser【可选】

  • StringParser,JsonParser 等

  • 将模型输出的AIMessage转化为string, json等易读格式

上述介绍了Langchain开发中常见的components,接下来将通过一简单案例将上述组件串起来,让大家更熟悉Langchain中的组件及接口调用。

03

小试牛刀

理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。

import os``# gpt 网关调用``os.environ["OPENAI_API_KEY"] = "{申请的集团api key}"``os.environ["OPENAI_API_BASE"] = "{您的url}"``   ``import openai``   ``from dotenv import load_dotenv, find_dotenv``_ = load_dotenv(find_dotenv())``   ``openai.api_key = os.environ['OPENAI_API_KEY']``   ``from langchain.prompts import ChatPromptTemplate``from langchain.chat_models import ChatOpenAI``from langchain.schema.output_parser import StrOutputParser``   ``prompt = ChatPromptTemplate.from_template(`    `"tell me a short joke about {topic}"``)``model = ChatOpenAI()``output_parser = StrOutputParser()``   ``chain = prompt | model | output_parser``   ``chain.invoke({"topic": "bears"})

输出:

"Why don't bears wear shoes?\nBecause they have bear feet!"

其中 chain = prompt | model | output_parser 按照数据传输顺序将上述声明的 prompt template、大语言模型、输出格式串联起来(Chain),逻辑清晰直接。

代码案例:调用Embedding、Completion、Chat Model

  • 将文本转化为Embedding :langchain_community.embeddings <-> OpenAIEmbeddings
from langchain_community.embeddings import OpenAIEmbeddings``   ``embeddings = OpenAIEmbeddings(`    `model="text-embedding-ada-002",`    `openai_api_key=os.environ["OPENAI_API_KEY"],`    `openai_api_base=os.environ["OPENAI_API_BASE"]``)``   ``text = "text"``query_result = embeddings.embed_query(text)
  • 文本补全:langchain_community.llms <-> OpenAI completion

    from langchain_community.llms import OpenAI``   ``llm = OpenAI(`    `model_name='gpt-35-turbo-instruct-0914',`    `openai_api_key=os.environ["OPENAI_API_KEY"],`    `base_url=base_url,`    `temperature=0``)``   ``llm.invoke("I have an order with order number 2022ABCDE, but I haven't received it yet. Could you please help me check it?")
    

对话模型:langchain_openai <-> ChatOpenAI

from langchain_openai import ChatOpenAI``   ``model = ChatOpenAI(model_name="gpt-35-turbo-1106") # "glm-4"``model.invoke("你好,你是智谱吗?")

04

总结

理解,首先 MCube 会依据模板缓存状态判断是否需要网络获取最新模板,当获取到模板后进行模板加载,加载阶段会将产物转换为视图树的结构,转换完成后将通过表达式引擎解析表达式并取得正确的值,通过事件解析引擎解析用户自定义事件并完成事件的绑定,完成解析赋值以及事件绑定后进行视图的渲染,最终将目标页面展示到屏幕。

LangChain作为一个使用流程直观的大模型开发框架,掌握它优势多多。希望您可以通过上述内容入门并熟悉LangChain框架,欢迎多多交流!

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥《中国大模型落地应用案例集》 收录了52个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述
💥《2024大模型行业应用十大典范案例集》 汇集了文化、医药、IT、钢铁、航空、企业服务等行业在大模型应用领域的典范案例。

在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值