2024具身大模型关键技术与应用报告-212页 (PPT 可编辑)

报告:2024具身大模型关键技术与应用报告-212页

报告共计212页,系统性地阐述了具身大模型在智能交互和多模态感知技术中的突破及应用。报告提出,具身大模型通过融合视觉、语音和触觉等多模态数据,显著提升了复杂场景的任务理解能力。以哈尔滨工业大学的研究为例,报告深入分析了具身大模型在制造、教育及医疗等行业中的创新应用,特别是在机器人感知与决策、智能助手等领域的性能表现。

报告强调,尽管具身智能在技术和应用上存在挑战,但其发展对于推动人工智能和机器人技术的融合、创新具有重要意义,是实现通用人工智能的关键分支。随着技术的进步,具身智能有望在多个领域实现应用,推动社会生产力的发展。

····

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

### 关于大模型的技术应用发展 #### 定义概述 大模型是指那些不仅依赖纯文本数据,还结合物理世界中的感知输入(如图像、声音和其他传感器信号),并通过模拟或实际操作来理解环境并作出反应的大规模预训练模型。这类模型能够更好地处理现实世界的复杂性和不确定性,在机器人学、自动驾驶等领域有重要价值[^1]。 #### 技术实现路径 为了使大型语言模型备实体交互的能力,通常会采用两种主要方法- **多模态融合**:通过集成视觉、听觉等多种感官信息到单一架构中,使得AI可以从不同角度理解和解释周围环境; - **强化学习机制**:利用奖励函数指导代理采取最优行动序列,从而优化决策过程,并逐步提升其执行特定任务的表现水平[^3]。 #### 应用场景举例 在工业自动化方面,化的人工智能可以帮助构建更灵活高效的生产线管理系统;而在智能家居环境中,则能提供个性化的服务体验,比如自动调节室内温度湿度参数以满足居住者偏好设置等需求。此外,对于医疗保健行业而言,它同样有着广阔的应用前景——例如辅助医生进行手术规划或是监测患者健康状态变化趋势等功能均有望借助该类先进技术得以实现改进和发展[^2]。 ```python import gymnasium as gym from stable_baselines3 import PPO env = gym.make('FetchReach-v3', render_mode="human") # 创建一个机械臂控制环境实例 model = PPO.load("./ppo_fetchreach.zip", env=env) # 加载预先训练好的策略网络权重文件 obs, info = env.reset() # 初始化观测值 for i in range(10): # 进行十次动作循环 action, _states = model.predict(obs) # 使用PPO算法预测下一步最佳行为方案 obs, rewards, terminated, truncated, info = env.step(action) # 执行选定的操作并向环境传递指令 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值