POWERBI 的应用步骤分为四步

本文详细介绍了使用PowerBI进行数据分析的过程,包括获取和处理数据、数据建模以及创建可视化报表。在数据建模阶段,涉及创建日历表、计算列、关联关系和度量值等操作。在可视化步骤中,重点讲解了数据整理、建立科目层次结构和度量值,以及如何进行图表设计,如设置标题、筛选、转换数据类型和创建透视表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

准备 获取数据

处理 编辑查询

建模 建立数据表关系 创建度量值 

可视化报表数据

 

脏数据分为

模式层(结构 属性

实例层(冗余 重复 空

 

 

数据建模操作实例

1 创建日历表

2 建立计算列

3 创建关联关系

4 设置排序规则

5 建立度量值

6 创建层次结构

 

 

余额表可视化步骤

一 数据整理

0 设置标题

1 筛选行

2 数据类型转换

3 建立日历表

4 添加计算列

 

二 数据建模

1 建立科目层次结构(PATH LOOKUPVALUE提取科目名称 PATHLENGTH层级深度

2 建立关联关系

3 设置度量值 (ISFILTERTED 筛选深度

 

三 可视化设计

 

合并查询 左外部 左事实表右维度表 (宽表 多维

分组依据 聚合 (长表 一维

透视:一维转二维

 

 

 

 

 

 

 

 

 

 

 

1a761408f1d442e2ac65cea2a8335ddc.png

<think>好的,我现在需要帮助用户了解Power BI中使用Power Query进行数据清洗的具体步骤。首先,我得回顾一下自己掌握的知识,并查看用户提供的引用内容,确保信息准确。 用户提到了三个引用,其中引用[3]提到了使用List.Accumulate进行批量替换的方法,这可能和数据清洗中的替换值有关。引用[2]讨论了数据刷新,虽然和清洗步骤不直接相关,但可能在数据更新的处理中需要考虑。引用[1]则概述了Power BI的工作流程,从Desktop创建报表到发布和共享,这让我想到数据清洗是在Power Query中进行的,属于整个流程的前期步骤。 接下来,我应该整理Power Query数据清洗的常规步骤。首先,用户需要连接到数据源,这在Power BI Desktop的“获取数据”选项中完成。然后,进入Power Query编辑器,进行初步的数据预览,识别问题,比如缺失值、重复项或格式错误。 数据清洗的具体步骤可能包括删除重复行、处理缺失值(比如填充或删除)、拆分列、更改数据类型、筛选数据行、替换值、添加自定义列以及合并查询等。需要逐一解释这些步骤,并举例说明,比如使用界面操作或M函数。例如,引用[3]中的List.Accumulate可以用来批量替换值,这可以作为一个进阶技巧提到。 同时,需要考虑用户可能的疑问,比如如何自动化这些清洗步骤,或者如何处理更复杂的数据转换。在步骤中应强调应用更改后关闭并应用,这样清洗步骤会被记录并应用到数据模型中。 最后,生成相关问题时,要围绕用户可能想深入了解的点,比如处理缺失值的方法、M函数的使用、性能优化、数据刷新的影响等。确保问题覆盖教程中的关键步骤和用户可能遇到的挑战。 需要检查步骤是否逻辑清晰,是否涵盖了主要的数据清洗操作,并正确引用了提供的资料,尤其是引用[3]中的替换方法。同时,使用中文回答,数学公式正确应用LaTeX格式,但根据用户的问题,可能数学公式较少,重点在操作步骤。确保没有使用Markdown格式,回答结构清晰,分步骤说明,并自然融入引用内容。</think>### Power BI中使用Power Query进行数据清洗的步骤指南 在Power BI中,数据清洗主要通过Power Query实现,其核心步骤分为以下8个阶段: 1. **连接数据源** - 在Power BI Desktop中选择「主页」→「获取数据」,支持Excel、CSV、数据库等30+数据源。 - 示例:选择Excel文件后,通过导航器预览并加载数据表。 2. **打开Power Query编辑器** - 加载数据后,点击「转换数据」进入编辑界面,此处可查看数据预览及查询设置面板[^1]。 3. **基础清洗操作** - **删除重复行**:选择目标列→「删除行」→「删除重复项」 - **处理缺失值**:右键列标题→「替换值」输入`null`替换为指定内容 - **拆分列**:对复合信息列使用「按分隔符拆分」或「按字符数拆分」 ```python # 类似Python的字符串操作(仅作逻辑示意) df['地址'].str.split('省', expand=True) ``` 4. **数据类型修正** - 修正错误数据类型(如文本型日期转为日期格式) - 操作路径:列标题右键→「更改类型」→选择目标类型 5. **高级清洗技巧** - **条件列创建**:通过「添加列」→「条件列」实现类似`IF`判断逻辑 $$ \text{新列} = \begin{cases} A & \text{if } x > 100 \\ B & \text{otherwise} \end{cases} $$ - **批量值替换**:使用`List.Accumulate`函数实现多对一替换[^3] ```excel // M函数示例(引用[3]) List.Accumulate( List.Zip({{原值列表}, {新值列表}}), 原始表, (x,y)=>Table.ReplaceValue(x, y{0}, y{1}, Replacer.ReplaceValue, {列名}) ) ``` 6. **数据行筛选** - 使用筛选器下拉菜单排除异常值 - 高级筛选:通过「保留行」/「删除行」实现自定义条件过滤 7. **数据合并处理** - 多表关联时使用「合并查询」功能 - 注意选择正确的连接类型(左外部、内部、完全外部等) 8. **应用并加载数据** - 完成清洗后点击「关闭并应用」,所有操作步骤将自动生成M代码并保存 : Power BI工作流起点为Power Query数据清洗 : 批量替换值的List.Accumulate方法实现[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值