ChatGPT实战之实现卡尔曼滤波

文章展示了一个使用Python实现的卡尔曼滤波器代码示例,该代码从Excel文件读取数据,应用滤波器进行平滑处理,并通过图形化显示了原始数据、滤波后数据及其方差,证明了ChatGPT编写的代码在数据过滤方面的有效性。
摘要由CSDN通过智能技术生成

我有一组数据想看看卡尔曼滤波后的效果如何,便用chatgpt写了一分代码,经过调试发现,效果还是可以的,上图看看滤波效果:

可见chatgpt写的代码还是可以用的,具体代码附在下边:

import numpy as np
import matplotlib.pyplot as plt
import xlrd#导入xlrd库
file='自己的.xlsx'#文件路径
wb=xlrd.open_workbook(filename=file)#用方法打开该文件路径下的文件
ws=wb.sheet_by_name("Sheet1")#打开该表格里的表单
dataset=[]
for r in range(ws.nrows):#遍历行
    col=[]
    for l in range(ws.ncols):#遍历列
        col.append((ws.cell(r, l).value))#将单元格中的值加入到列表中(r,l)相当于坐标系,cell()为单元格,value为单元格的值
    dataset.append(col)



# 状态转移矩阵A
A = np.array([[1, 1], [0, 1]])
# 状态噪声矩阵Q
Q = np.array([[0.01, 0], [0, 0.01]])
# 观测矩阵H
H = np.array([[1, 0]])
# 观测噪声矩阵R
R = np.array([[5]])
# 初始状态值
x0 = np.array([[90], [0]])
P0 = np.eye(2) * 10
def kalman_filter(data):
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白嫖怪阿七

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值