【深度学习】AMP(Automatic Mixed Precision,自动混合精度)

@[toc]AMP(Automatic Mixed Precision,自动混合精度)

AMP

在深度学习中,AMP(Automatic Mixed Precision,自动混合精度) 是一种通过混合使用单精度(FP32)和半精度(FP16)来加速训练并减少显存占用的技术。它能够在不显著损失模型精度的情况下,大幅提升训练速度和效率

1. 什么是混合精度训练?

混合精度训练是指在训练过程中同时使用两种不同的浮点数精度:

FP32(单精度浮点数):32 位浮点数,精度高,但计算速度较慢,显存占用较大。

FP16(半精度浮点数):16 位浮点数,精度较低,但计算速度快,显存占用小。

通过混合使用 FP32 和 FP16,可以在保持模型精度的同时,显著提升训练速度和减少显存占用。

2. AMP 的工作原理

AMP 的核心思想是:

使用 FP16 进行计算(如矩阵乘法、卷积等),以加速计算并减少显存占用。

使用 FP32 存储模型权重和梯度,以避免因 FP16 精度不足而导致的数值不稳定问题。

在需要时,自动将 FP16 转换为 FP32(例如在梯度更新时)。

3. AMP 的优势

1.加速训练:FP16 的计算速度比 FP32 快,尤其是在支持 Tensor Core 的 GPU(如 NVIDIA Volta、Turing、Ampere 架构)上。

2.减少显存占用:FP16 的显存占用是 FP32 的一半,可以训练更大的模型或使用更大的批量大小。

3.保持模型精度:通过混合精度训练,可以在大多数情况下保持模型的精度。

4. 如何使

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shanks66

你的鼓励是我创作的最大动力!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值