@[toc]AMP(Automatic Mixed Precision,自动混合精度)
AMP
在深度学习中,AMP
(Automatic Mixed Precision,自动混合精度) 是一种通过混合使用单精度(FP32)和半精度(FP16)
来加速训练并减少显存占用的技术。它能够在不显著损失模型精度
的情况下,大幅提升训练速度和效率
。
1. 什么是混合精度训练?
混合精度训练是指在训练过程中同时使用两种不同的浮点数精度:
FP32(单精度浮点数)
:32 位浮点数,精度高,但计算速度较慢,显存占用较大。
FP16(半精度浮点数)
:16 位浮点数,精度较低,但计算速度快,显存占用小。
通过混合使用 FP32 和 FP16,可以在保持模型精度的同时,显著提升训练速度和减少显存占用。
2. AMP 的工作原理
AMP 的核心思想
是:
使用 FP16 进行计算
(如矩阵乘法、卷积等),以加速计算并减少显存占用。
使用 FP32 存储模型权重和梯度
,以避免因 FP16 精度不足而导致的数值不稳定问题。
在需要时,自动将 FP16 转换为 FP32
(例如在梯度更新时)。
3. AMP 的优势
1.加速训练:FP16 的计算速度比 FP32 快,尤其是在支持 Tensor Core 的 GPU(如 NVIDIA Volta、Turing、Ampere 架构)上。
2.减少显存占用:FP16 的显存占用是 FP32 的一半,可以训练更大的模型或使用更大的批量大小。
3.保持模型精度:通过混合精度训练,可以在大多数情况下保持模型的精度。