pytorch笔记:自动混合精度(AMP)

1 理论部分

1.1 FP16 VS FP32

  • FP32具有八个指数位和23个小数位,而FP16具有五个指数位和十个小数位
  • Tensor内核支持混合精度数学,即输入为半精度(FP16),输出为全精度(FP32)

1.1.1 使用FP16的优缺点

  • 优点
    • FP16需要较少的内存,因此更易于训练和部署大型神经网络,同时还减少了数据移动(同时可以使用更大的batch)
    • 数学运算的运行速度大大降低了
      • NVIDIA提供的Volta GPU的确切数量是:FP16中为125 TFlops,而FP32中为15.7 TFlops(加速8倍)
  • 缺点:
    • 从FP32转到FP16时,必然会降低精度
      • 但有的时候,这个精度的降低可以忽略不计
      • FP16实际上可以很好地表示大多数权重和渐变。
      • ——>拥有存储和使用FP32所需的所有这些额外位只是浪费。
    • 溢出错误
      • 由于FP16的动态范围比FP32位的狭窄很多,因此,在计算过程中很容易出现上溢出和下溢出
      • 溢出之后就会出现"NaN"的问题

1.2 解决上述FP16的问题

1.2.1 混合精度训练

  • 用FP16做储存和乘法,而用FP32做累加避免舍入误差
  • ——>混合精度训练的策略有效地缓解了舍入误差的问题

1.2.2 损失放大(Loss scaling)

  • 即使使用了混合精度训练,还是存在无法收敛的情况
    • 原因是激活梯度的值太小,造成了溢出。
  • ——>通过使用torch.cuda.amp.GradScaler,通过放大loss的值来防止梯度的下溢出
    • 只在BP时传递梯度信息使用,真正更新权重时还是要把放大的梯度再unscale回去
      • 反向传播前,将损失变化手动增大2^k倍

        • 因此反向传播时得到的中间变量(激活函数梯度)不会溢出;

      • 反向传播后,将权重梯度缩小2^k倍,恢复正常值。

2 torch.cuda.amp

  • AMP(自动混合精度)的关键词有两个:
    • 自动
      • Tensor的dtype类型会自动变化,框架按需自动调整tensor的dtype,当然有些地方还需手动干预
    • 混合精度
      • 采用不止一种精度的Tensor,torch.FloatTensor和torch.HalfTensor

2.1 Pytorch中不同类型的tensor

类型名称位数
torch.DoubleTensor64bit
torch.LongTensor64bit
torch.FloatTensor(默认)32bit
torch.IntTensor32bit
torch.HalfTensor16bit
torch.BFloat16Tensor16bit
torch.ShortTensor16bit
torch.ByteTensor(无符号)8bit
torch.CharTensor8bit
torch.BoolTensorBoolean

2.2 在AMP上下文中,被自动转化为半精度浮点型的参数:

__matmul__
addbmm
addmm
addmv
addr
baddbmm
bmm
chain_matmul
conv1d
conv2d
conv3d
conv_transpose1d
conv_transpose2d
conv_transpose3d
linear
matmul
mm
mv
prelu

2.3 autocast

from torch.cuda.amp import autocast as autocast


model = Net().cuda()
#首先初始化一个网络模型Net(),并使用.cuda()方法将模型移至GPU上以利用GPU加速
#Net中的参数默认是torch.FloatTensor

optimizer = optim.SGD(model.parameters(), ...)

for input, target in data:
    optimizer.zero_grad()

    
    with autocast():
        output = model(input)
        loss = loss_fn(output, target)
    '''
    自动混合精度环境

    包含了前向过程(模型的输出)和loss的计算

    把支持参数对应tensor的dtype转换为半精度浮点型,从而在不损失训练精度的情况下加快运算

    进入autocast的上下文时,tensor可以是任何类型
        不需要在model或者input上手工调用.half() ,框架会自动做
    '''

    
    loss.backward()
    optimizer.step()
    # 反向传播在autocast上下文之外

 2.4 GradScaler

在2.3的基础上增加,反向传播时增加梯度,以防止下溢出

from torch.cuda.amp import autocast as autocast
from torch.cuda.amp import GradScaler


model = Net().cuda()
#首先初始化一个网络模型Net(),并使用.cuda()方法将模型移至GPU上以利用GPU加速
#Net中的参数默认是torch.FloatTensor

optimizer = optim.SGD(model.parameters(), ...)


scaler = GradScaler()
# 在训练最开始之前实例化一个GradScaler对象

for epoch in epochs:
    for input, target in data:
        optimizer.zero_grad()


        with autocast():
            output = model(input)
            loss = loss_fn(output, target)
        '''
        自动混合精度环境

        包含了前向过程(模型的输出)和loss的计算

        把支持参数对应tensor的dtype转换为半精度浮点型,从而在不损失训练精度的情况下加快运算

        进入autocast的上下文时,tensor可以是任何类型
            不需要在model或者input上手工调用.half() ,框架会自动做
        '''

        
        scaler.scale(loss).backward()
        # Scales loss. 为了梯度放大,防止下溢出
        # 代替原来的loss.backward()
        
        scaler.step(optimizer)
        '''
        scaler.step() 首先把梯度的值unscale回来.
        
        如果梯度的值不是 infs 或者 NaNs, 那么调用optimizer.step()来更新权重,
            否则,忽略step调用,从而保证权重不更新(不被破坏)
        '''

        
        scaler.update()
        '''
        准备着,看是否要增大scaler

        '''
  •  scaler的大小在每次迭代中动态的估计
    • 为了尽可能的减少梯度underflow,scaler应该更大
    • 但是如果太大的话,半精度浮点型的tensor又容易overflow(变成inf或者NaN)。
  • ——>动态估计的原理就是在不出现inf或者NaN梯度值的情况下尽可能的增大scaler的值

3 一些tips

  • 为了保证计算不溢出,首先保证人工设定的常数不溢出。如epsilon,INF等
  • Dimension最好是8的倍数:维度是8的倍数,性能最好
  • 涉及sum的操作要小心,容易溢出
    • 比如softmax操作,建议用官方API,并定义成layer写在模型初始化里
  • 如果遇到以下的报错:
    • RuntimeError: expected scalar type float but found c10::Half
    • 需要手动在tensor上调用.float()
  • 25
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值