最短路问题(C++)

11 篇文章 0 订阅
6 篇文章 0 订阅
文章介绍了两种寻找图中单源最短路径的方法:BFS用于无权图,Dijkstra算法适用于带权图。BFS通过队列进行广度优先搜索,Dijkstra算法使用优先队列选择当前未访问且距离最小的顶点,并更新其相邻顶点的最短路径。文章提供了C++实现代码示例。
摘要由CSDN通过智能技术生成

 单源最短路径

 BFS方法(无权图)

void BFS_MIN_Distance(Graph G, int u){
    for(i=0;i<G.vexnum;++i){
        d[i]=∞;
        path[i]=-1;
    }
    d[u]=0;
    visited[u]=TRUE;
    EnQuene(Q,u);
    while(!isEmpty(Q)){
        DeQueue(Q,u);
        for(w=FirstNeighbor(G,u);w>=0;w=NextNeighbor(G,u,w)){
            if(!visited[w]){
                d[w]=d[u]+1;
                path[w]=u;
                visited[w]=TRUE;
                EnQueue(Q,w);
            }
        }
    }
}

Dijkstra算法(带权图、无权图)

总共三个数组,分别存储各顶点是否已找到最短路径、最短路径长度、路径上的前驱。

分别对应下方代码的visited[n]、dist[n]、pred[]。

初始: 若从Vo开始,令final[0]=true; dist[0]=0; path[0]=-1。其余顶点final[k]=false; dist[k]=arcs[0][k]; path[k]= (arcs[0][k]==∞) ? -1 :0

n-1轮处理:循环遍历所有顶点,找到还没确定最短路径,且dist 最小的顶点Vi,令final[i]=true。并检查所有邻接自Vi的顶点,对于邻接自Vi的顶点Vj,若final==false 且 dist[i]+arcs[i][j] < dist[j],则令 dist[j]=dist[i]+arcs[i][j]; path[j]=i。 (注: arcs[i][j]表示Vi到Vj的弧的权值)
 

#include <iostream>
#include <limits.h>
using namespace std;

// 定义一个表示无穷大的常量
#define INF INT_MAX

// n 为图的顶点数,src 为源点
void dijkstra(int graph[][10], int n, int src) {
    bool visited[n]; // 标记各顶点是否已找到最短路径
    int dist[n]; // 记录最短路径的长度
    int pred[n]; // 记录路径上的前驱

    // 初始化 visited, dist, pred 数组
    for (int i = 0; i < n; i++) {
        visited[i] = false;
        dist[i] = INF;
        pred[i] = -1;
    }

    // 将起点到自己的距离设置为 0
    dist[src] = 0;

    // 找到从起点到其它所有顶点的最短路径
    for (int i = 0; i < n - 1; i++) {
        // 找到距离起点最近的顶点
        int minDist = INF, minIndex;
        for (int j = 0; j < n; j++) {
            if (!visited[j] && dist[j] < minDist) {
                minDist = dist[j];
                minIndex = j;
            }
        }

        // 标记该顶点为已找到最短路径
        visited[minIndex] = true;

        // 更新与该顶点相邻的顶点的最短路径
        for (int j = 0; j < n; j++) {
            int newDist = graph[minIndex][j] + dist[minIndex];
            if (!visited[j] && graph[minIndex][j] && newDist < dist[j]) {
                dist[j] = newDist;
                pred[j] = minIndex;
            }
        }
    }

    // 输出结果
    cout << "顶点\t最短距离\t路径" << endl;
    for (int i = 0; i < n; i++) {
        cout << i << "\t" << dist[i] << "\t\t" << i;
        int j = i;
        while (j != src) {
            cout << "<-" << pred[j];
            j = pred[j];
        }
        cout << endl;
    }
}

int main() {
    int n = 6; // 图的顶点数
    int graph[10][10] = { // 图的邻接矩阵
        {0, 1, 4, 0, 0, 0},
        {1, 0, 2, 5, 0, 0},
        {4, 2, 0, 1, 3, 0},
        {0, 5, 1, 0, 2, 6},
        {0, 0, 3, 2, 0, 4},
        {0, 0, 0, 6, 4, 0}
    };
    int src = 0; // 源点

    dijkstra(graph, n, src);

    return 0;
}



/*

顶点    最短距离    路径
0       0               0
1       1               1<-0
2       3               2<-1<-0
3       4               3<-2<-1<-0
4       6               4<-2<-1<-0
5       10              5<-3<-2<-1<-0


*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值