如何获得rcorr()中p小于0.05, r大于一定数值的数据

该篇博客介绍了如何在R语言中使用rcorr函数计算相关矩阵,并通过代码展示如何筛选出p值小于0.05以及相关系数大于0.75的变量对,以便于分析显著且高度相关的数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果一个数据集包含了较多的变量,在计算相关性之后会产生庞大的相关矩阵,而我们关心的可能只是其中显著相关(p<0.05)并且相关度比较高的数据,为了方便找到这些数据,以下code仅作参考:

library(Hmisc)

#flattenCorrMatrix在之后会用到,将相关矩阵转换成为一个每行由两两变量对应的“cor”和“p”组成的data.frame, 参考网址Correlation matrix : Formatting and visualization - Easy Guides - Wiki - STHDA

flattenCorrMatrix <- function(cormat, pmat) {
  ut <- upper.tri(cormat)
  data.frame(
    row = rownames(cormat)[row(cormat)[ut]],
    column = rownames(cormat)[col(cormat)[ut]],
    cor  =(cormat)[ut],
    p = pmat[ut]
    )
}
result<-rcorr(as.matrix(data))
cor_p<-flattenCorrMatrix(result$r, result$P)

#首先找出 p<0.05的数据
cor_p.005 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值