关注我,持续分享逻辑思维&管理思维&面试题; 可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;
推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富。
-------------------------------------正文----------------------------------------
在GPU(图形处理单元)的上下文中,SM通常指的是“Streaming Multiprocessor”,即流式多处理器。它是NVIDIA GPU架构中的一个核心组件,负责执行图形和计算操作。
以下是关于NVIDIA GPU中SM的一些关键点:
-
并行处理单元: SM是GPU中的一个并行处理单元,负责执行各种计算任务,包括图形渲染、深度学习和其他并行计算任务。
-
执行 warps: 在NVIDIA的CUDA架构中,SM执行一组线程(称为warp),这些线程是同时执行的单指令多线程(SIMT)集合。
-
寄存器和缓存: 每个SM拥有自己的寄存器文件和缓存,用于存储线程执行期间的数据,以减少对全局内存的访问需求。
-
调度和执行: SM负责调度和执行线程块(thread block),这些线程块被分配给SM进行处理。
-
FP和INT运算: SM包含专门用于浮点(FP)和整数(INT)运算的执行单元。
-
内存访问: SM还负责处理内存访问请求,包括共享内存和全局内存。
-
版本和架构: 不同版本的NVIDIA GPU架构(如Ampere、Volta、Pascal等)中的SM可能在设计和性能上有所不同。
-
性能指标: SM的数量和性能是衡量GPU整体性能的重要指标之一,尤其是在并行计算和深度学习领域。
总的来说,SM是NVIDIA GPU中用于执行并行计算任务的基本单元,它的设计和性能直接影响到GPU的计算能力和效率。.
感兴趣的同学辛苦 关注/点赞 ,持续分享逻辑、算法、管理、技术、人工智能相关的文章。
有意找工作的同学,请参考博主的原创:《面试官心得--面试前应该如何准备》,《面试官心得--面试时如何进行自我介绍》, 《做好面试准备,迎接2024金三银四》。
或关注博主免费专栏【程序员宝典--常用代码分享】里面有大量面试涉及的算法或数据结构编程题。
博主其它经典原创:《管理心得--如何高效进行跨部门合作》,《技术心得--如何成为优秀的架构师》、《管理心得--如何成为优秀的架构师》、《管理心理--程序员如何选择职业赛道》,及
《C#实例:SQL如何添加数据》,《C#实战分享--爬虫的基础原理及实现》欢迎大家阅读。